激光与光电子学进展, 2019, 56 (13): 130002, 网络出版: 2019-07-11   

光束积分激光空间整形技术 下载: 2573次封面文章

Laser Space Shaping Based on Beam Integration
孟晶晶 1,2,3余锦 2,3,*貊泽强 1,2,3王金舵 1,2,3代守军 1,2,3王晓东 1,2,3
作者单位
1 中国科学院光电研究院计算光学成像技术重点实验室, 北京 100094
2 中国科学院光电研究院, 北京 100094
3 中国科学院大学, 北京 100049
引用该论文

孟晶晶, 余锦, 貊泽强, 王金舵, 代守军, 王晓东. 光束积分激光空间整形技术[J]. 激光与光电子学进展, 2019, 56(13): 130002.

Jingjing Meng, Jin Yu, Zeqiang Mo, Jinduo Wang, Shoujun Dai, Xiaodong Wang. Laser Space Shaping Based on Beam Integration[J]. Laser & Optoelectronics Progress, 2019, 56(13): 130002.

参考文献

[1] DickeyF, LizotteT. Laser beam shaping applications[M]. Boca Raton: CRC Press, 2017: 16- 18.

[2] 李银妹, 龚雷, 李迪, 等. 光镊技术的研究现况[J]. 中国激光, 2015, 42(1): 0101001.

    Li Y M, Gong L, Li D, et al. Progress in optical tweezers technology[J]. Chinese Journal of Lasers, 2015, 42(1): 0101001.

[3] 郭志和, 刘泽田, 陈启敏, 等. 激光整形器件在光镊中的应用及进展[J]. 激光与光电子学进展, 2017, 54(9): 090004.

    Guo Z H, Liu Z T, Chen Q M, et al. Application and progress of laser shaping devices in optical tweezers[J]. Laser & Optoelectronics Progress, 2017, 54(9): 090004.

[4] Oliker V, Doskolovich L L, Bykov D A. Beam shaping with a plano-freeform lens pair[J]. Optics Express, 2018, 26(15): 19406-19419.

[5] 杨智焜, 马晓辉, 房俊宇, 等. 半导体激光可调谐局域空心光束[J]. 中国激光, 2018, 45(11): 1105001.

    Yang Z K, Ma X H, Fang J Y, et al. Tunable bottle beam of semiconductor laser[J]. Chinese Journal of Lasers, 2018, 45(11): 1105001.

[6] 杨向通, 范薇. 利用双折射透镜组实现激光束空间整形[J]. 光学学报, 2006, 26(11): 1698-1704.

    Yang X T, Fan W. Spatial laser beam shaping using birefringent lenses[J]. Acta Optica Sinica, 2006, 26(11): 1698-1704.

[7] Veldkamp W B. Laser beam profile shaping with binary diffraction gratings[J]. Optics Communications, 1981, 38(5/6): 381-386.

[8] Hajj B, Oudjedi L, Fiche J B, et al. Highly efficient multicolor multifocus microscopy by optimal design of diffraction binary gratings[J]. Scientific Reports, 2017, 7: 5284.

[9] Yamaguchi S, Kobayashi T, Saito Y, et al. Collimation of emissions from a high-power multistripe laser-diode bar with multiprism array coupling and focusing to a small spot[J]. Optics Letters, 1995, 20(8): 898-900.

[10] Yamaguchi S, Imai H. Efficient Nd∶YAG laser end-pumped by a 1 cm aperture laser-diode bar with a GRIN lens array coupling[J]. IEEE Journal of Quantum Electronics, 1992, 28(4): 1101-1105.

[11] Zheng G X, Du C L, Zhou C, et al. Laser diode stack beam shaping by reflective two-wedge-angle prism arrays[J]. Optical Engineering, 2005, 44(4): 044203.

[12] Huang Z H, Xiong L L, Liu H, et al. Double-cutting beam shaping technique for high-power diode laser area light source[J]. Optical Engineering, 2013, 52(10): 106108.

[13] Wu Y L, Dong Z Y, Chen Y Q, et al. Beam shaping for kilowatt fiber-coupled diode lasers by using one-step beam cutting-rotating of prisms[J]. Applied Optics, 2016, 55(34): 9769-9773.

[14] Shi Z D, Fang L, Fan B, et al. Beam shaping system based on a prism array for improving the throughput of a dispersive spectrometer[J]. Applied Optics, 2015, 54(10): 2715-2719.

[15] Kagoshima Y, Takano H, Takeda S. Constant-pitch microprism-array optical device for beam condensers in hard X-ray synchrotron radiation beamlines[J]. Journal of Applied Physics, 2013, 113(21): 214314.

[16] Zheng C, Li Q Y, Rosengarten G, et al. Compact, semi-passive beam steering prism array for solar concentrators[J]. Applied Optics, 2017, 56(14): 4158-4167.

[17] Tsuji H, Nakano T, Matsumoto Y, et al. Flattop beam illumination for 3D imaging ladar with simple optical devices in the wide distance range[J]. Optical Review, 2016, 23(2): 155-160.

[18] 周晓凤, 戚祖敏, 罗向前, 等. 利用含二面角误差的角锥棱镜阵列实现反射光束均匀发散的方法[J]. 物理学报, 2017, 66(8): 084201.

    Zhou X F, Qi Z M, Luo X Q, et al. A method to diverge reflected beam uniformly using cube-corner retroreflector array with dihedral angle tolerances[J]. Acta Physica Sinica, 2017, 66(8): 084201.

[19] Doherty V J. Design of mirrors with segmented conical surfaces tangent to a discontinuous aspheric base[J]. Proceedings of SPIE, 1983, 399: 263-271.

[20] David S R, Walker T, Cassarly W J. Faceted reflector design for uniform illumination[J]. Proceedings of SPIE, 1998, 3842: 437-446.

[21] Cassarly W J, David S R, Jenkins D G, et al. Automated design of a uniform distribution using faceted reflectors[J]. Optical Engineering, 2000, 39(7): 1830-1839.

[22] Dagenais D M, Woodroffe J A, Itzkan I. Optical beam shaping of a high power laser for uniform target illumination[J]. Applied Optics, 1985, 24(5): 671-675.

[23] Ehlers B, Du K M, Baumann M, et al. Beam shaping and fiber coupling of high-power diode laser arrays[J]. Proceedings of SPIE, 1997, 3097: 639-644.

[24] Hornbeck L J. Digital light processing for high-brightness high-resolution applications[J]. Proceedings of SPIE, 1997, 3013: 27-40.

[25] Ren Y X, Lu R D, Gong L. Tailoring light with a digital micromirror device[J]. Annalen Der Physik, 2015, 527(7/8): 447-470.

[26] Liang J Y, Kohn R N, Becker M F, et al. 1.5% root-mean-square flat-intensity laser beam formed using a binary-amplitude spatial light modulator[J]. Applied Optics, 2009, 48(10): 1955-1962.

[27] Liang J Y, Wu S Y, Kohn R N, et al. Bandwidth-limited laser image projection using a DMD-based beam shaper[J]. Proceedings of SPIE, 2012, 8254: 82540M.

[28] Ding X Y, Ren Y X, Lu R D. Shaping super-Gaussian beam through digital micro-mirror device[J]. Science China Physics, Mechanics & Astronomy, 2015, 58(3): 1-6.

[29] Durnin J. Exact solutions for nondiffracting beams. I. The scalar theory[J]. Journal of the Optical Society of America A, 1987, 4(4): 651-654.

[30] 曾军, 陈亚红, 刘显龙, 等. 部分相干涡旋光束研究进展[J]. 光学学报, 2019, 39(1): 0126004.

    Zeng J, Chen Y H, Liu X L, et al. Research progress on partially coherent vortex beams[J]. Acta Optica Sinica, 2019, 39(1): 0126004.

[31] Gong L, Liu W W, Zhao Q, et al. Controllable light capsules employing modified Bessel-Gauss beams[J]. Scientific Reports, 2016, 6: 29001.

[32] Ren Y X, Fang Z X, Lu R D. Shaping non-diffracting beams with a digital micromirror device[J]. Proceedings of SPIE, 2016, 9761: 97610O.

[33] Lakner H K, Duerr P, Dauderstaedt U, et al. Design and fabrication of micromirror arrays for UV lithography[J]. Proceedings of SPIE, 2001, 4561: 255-264.

[34] Mulder M, Engelen A, Noordman O, et al. Performance of FlexRay: a fully programmable illumination system for generation of freeform sources on high NA immersion systems[J]. Proceedings of SPIE, 2010, 7640: 76401P.

[35] Mulder M, Engelen A, Noordman O, et al. Performance of a programmable illuminator for generation of freeform sources on high NA immersion systems[J]. Proceedings of SPIE, 2009, 7520: 75200Y.

[36] McIntyre G, Corliss D, Groenendijk R, et al. . Qualification, monitoring, and integration into a production environment of the world's first fully programmable illuminator[J]. Proceedings of SPIE, 2011, 7973: 797306.

[37] 邢莎莎, 冉英华, 江海波, 等. 基于微反射镜阵列的光刻照明模式变换系统设计[J]. 光学学报, 2015, 35(11): 1111002.

    Xing S S, Ran Y H, Jiang H B, et al. Illumination mode conversion system design based on micromirror array in lithography[J]. Acta Optica Sinica, 2015, 35(11): 1111002.

[38] 杜猛, 邢廷文, 袁家虎, 等. 微反射镜阵列在光束整形中的应用[J]. 红外与激光工程, 2014, 43(4): 1210-1214.

    Du M, Xing T W, Yuan J H, et al. Application of micromirror array in beam shaping[J]. Infrared and Laser Engineering, 2014, 43(4): 1210-1214.

[39] Mitchell K J, Turtaev S, Padgett M J, et al. High-speed spatial control of the intensity, phase and polarisation of vector beams using a digital micro-mirror device[J]. Optics Express, 2016, 24(25): 29269-29282.

[40] Roth M, Heber J, Janschek K. Modulating complex beams in amplitude and phase using fast tilt-micromirror arrays and phase masks[J]. Optics Letters, 2018, 43(12): 2860-2863.

[41] 贾文武, 汪岳峰, 黄峰, 等. 复眼透镜在激光二极管阵列光束整形中的应用[J]. 中国激光, 2011, 38(2): 0202008.

    Jia W W, Wang Y F, Huang F, et al. Application of fly's eye lens in beam shaping laser diode array[J]. Chinese Journal of Lasers, 2011, 38(2): 0202008.

[42] Qiao B, Jiang P, Yang H J, et al. The elliptical micro-lens array in the application of the LDA beam shaping[J]. Optik, 2014, 125(24): 7149-7153.

[43] Lin J, Xu L X, Wang S B, et al. Theoretical analysis of lens array for uniform irradiation on target in multimode fiber lasers[J]. Chinese Optics Letters, 2014, 12(10): 101402.

[44] DickeyF, LizotteT. Laser beam shaping: theory and techniques[M]. 2nd ed. Boca Raton: CRC Press, 2017: 281- 282.

[45] Büttner A, Zeitner U D. Wave optical analysis of light-emitting diode beam shaping using microlens arrays[J]. Optical Engineering, 2002, 41(10): 2393-2400.

[46] Lim C S, Hong M H, Senthil Kumar A, et al. Study of field intensity distribution of laser beam propagating through a micro-lens array[J]. Applied Physics A, 2012, 107(1): 149-153.

[47] 殷智勇, 汪岳峰, 尹韶云, 等. 微透镜变化对半导体激光器光束匀化效果的影响[J]. 强激光与粒子束, 2013, 25(10): 2556-2560.

    Yin Z Y, Wang Y F, Yin S Y, et al. Impact of microlens changes on the homogenization effect of semiconductor laser beam[J]. High Power Laser and Particle Beams, 2013, 25(10): 2556-2560.

[48] Schreiber P, Kudaev S, Dannberg P, et al. Homogeneous LED-illumination using microlens arrays[J]. Proceedings of SPIE, 2005, 5942: 59420K.

[49] Wang Z X, Zhu G Z, Huang Y, et al. Analytical model of microlens array system homogenizer[J]. Optics & Laser Technology, 2015, 75: 214-220.

[50] Wippermann F, Zeitner U D, Dannberg P, et al. Beam homogenizers based on chirped microlens arrays[J]. Optics Express, 2007, 15(10): 6218-6231.

[51] Deng Z F, Yang Q, Chen F, et al. High-performance laser beam homogenizer based on double-sided concave microlens[J]. IEEE Photonics Technology Letters, 2014, 26(20): 2086-2089.

[52] Yao P H, Chen C H, Chen C H. Low speckle laser illuminated projection system with a vibrating diffractive beam shaper[J]. Optics Express, 2012, 20(15): 16552-16566.

[53] Chen E G, Huang J M, Guo T L, et al. A laser beam shaper for homogeneous rectangular illumination based on freeform micro lens array[J]. Optoelectronics Letters, 2016, 12(4): 253-256.

[54] Zhou Z, Lee S H. Fabrication of an improved gray-scale mask for refractive micro- and meso-optics[J]. Optics Letters, 2004, 29(5): 457-458.

[55] Yang J J, Liao Y S, Chen C F. Fabrication of long hexagonal micro-lens array by applying gray-scale lithography in micro-replication process[J]. Optics Communications, 2007, 270(2): 433-440.

[56] Zuo H J, Choi D Y, Gai X, et al. CMOS compatible fabrication of micro, nano convex silicon lens arrays by conformal chemical vapor deposition[J]. Optics Express, 2017, 25(4): 3069-3076.

[57] Yu W, Yuan X. Fabrication of refractive microlens in hybrid SiO2/TiO2 sol-gel glass by electron beam lithography[J]. Optics Express, 2003, 11(8): 899-903.

[58] Tseng A A. Recent developments in micromilling using focused ion beam technology[J]. Journal of Micromechanics and Microengineering, 2004, 14(4): R15-R34.

[59] Saito K, Hayashi H, Nishikawa H. Fabrication of curved PDMS microstructures on silica glass by proton beam writing aimed for micro-lens arrays on transparent substrates[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2013, 306: 284-287.

[60] Huang S Z, Li M J, Shen L G, et al. Improved slicing strategy for digital micromirror device-based three-dimensional lithography with a single scan[J]. Micro & Nano Letters, 2017, 12(1): 49-52.

孟晶晶, 余锦, 貊泽强, 王金舵, 代守军, 王晓东. 光束积分激光空间整形技术[J]. 激光与光电子学进展, 2019, 56(13): 130002. Jingjing Meng, Jin Yu, Zeqiang Mo, Jinduo Wang, Shoujun Dai, Xiaodong Wang. Laser Space Shaping Based on Beam Integration[J]. Laser & Optoelectronics Progress, 2019, 56(13): 130002.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!