光学学报, 2018, 38 (3): 0328001, 网络出版: 2018-03-20   

中国光纤传感40年 下载: 2867次特邀综述

The 40 Years of Optical Fiber Sensors in China
作者单位
1 清华大学电子工程系, 北京 100084
2 桂林电子科技大学电子工程与自动化学院, 广西 桂林 541004
3 清华大学精密仪器系, 北京 100084
引用该论文

廖延彪, 苑立波, 田芊. 中国光纤传感40年[J]. 光学学报, 2018, 38(3): 0328001.

Liao Yanbiao, Yuan Libo, Tian Qian. The 40 Years of Optical Fiber Sensors in China[J]. Acta Optica Sinica, 2018, 38(3): 0328001.

参考文献

[1] 廖延彪. 中国光纤传感发展回顾与展望[ C]∥2010-光纤传感器发展与产业化论坛, 2010.

    廖延彪. 中国光纤传感发展回顾与展望[ C]∥2010-光纤传感器发展与产业化论坛, 2010.

[2] 廖延彪. 在我国发展光纤传感器的必要性与可能性[R]. 国家传感器技术政策专家论证报告, 1986.

    廖延彪. 在我国发展光纤传感器的必要性与可能性[R]. 国家传感器技术政策专家论证报告, 1986.

[3] 廖延彪. 我国光纤传感发展的现状[ C]∥光纤传感学术交流会暨仪表元件学会光纤传感专业委员会成立大会, 1985.

    廖延彪. 我国光纤传感发展的现状[ C]∥光纤传感学术交流会暨仪表元件学会光纤传感专业委员会成立大会, 1985.

[4] 廖延彪. 光纤传感器[J]. 中国激光, 1984, 11(9): 513-519.

    廖延彪. 光纤传感器[J]. 中国激光, 1984, 11(9): 513-519.

    Liao Y B. An overview of optical fiber sensors[J]. Chinese Journal of Lasers, 1984, 11(9): 513-519.

    Liao Y B. An overview of optical fiber sensors[J]. Chinese Journal of Lasers, 1984, 11(9): 513-519.

[5] 廖延彪. 光纤传感器[C]∥《中国激光》出版十周年纪念大会及学术交流会, 1984.

    廖延彪. 光纤传感器[C]∥《中国激光》出版十周年纪念大会及学术交流会, 1984.

[6] 杨雪郁, 廖延彪, 吴庚生, 等. 光纤高压大电流传感器两种检测系统分析[J]. 激光与红外, 1986( 5): 23- 26.

    杨雪郁, 廖延彪, 吴庚生, 等. 光纤高压大电流传感器两种检测系统分析[J]. 激光与红外, 1986( 5): 23- 26.

[7] 杨雪郁, 廖延彪, 吴庚生, 等. 光纤电流传感器检测系统的分析[J]. 中国激光, 1987, 14(5): 312-316.

    杨雪郁, 廖延彪, 吴庚生, 等. 光纤电流传感器检测系统的分析[J]. 中国激光, 1987, 14(5): 312-316.

    Yang X Y, Liao Y B, Wu G S, et al. Analysis of detection system of fiber current sensors[J]. Chinese Journal of Lasers, 1987, 14(5): 312-316.

    Yang X Y, Liao Y B, Wu G S, et al. Analysis of detection system of fiber current sensors[J]. Chinese Journal of Lasers, 1987, 14(5): 312-316.

[8] 廖延彪. 光纤传感器的发展概况[ C]∥仪表元器件学会第二届学术年会, 1987.

    廖延彪. 光纤传感器的发展概况[ C]∥仪表元器件学会第二届学术年会, 1987.

[9] Liao YB. A new detection scheme for overcoming the zero drift problem in polarimetric fiber-optic current sensors[C]∥Proceedings of Sino-Japanese International Symposium on Optical Sensors, 1988: 18- 20.

    Liao YB. A new detection scheme for overcoming the zero drift problem in polarimetric fiber-optic current sensors[C]∥Proceedings of Sino-Japanese International Symposium on Optical Sensors, 1988: 18- 20.

[10] Liao YB, Chen GL, Wu GS, et al. The experimental study and theoretical analysis of an optical fiber current sensor[C]∥Optical Fibres and Their Applications V, 1990: 185- 194.

    Liao YB, Chen GL, Wu GS, et al. The experimental study and theoretical analysis of an optical fiber current sensor[C]∥Optical Fibres and Their Applications V, 1990: 185- 194.

[11] Liao YB. Study of long time stability in the OFCS[C]∥Proceedings of the International Conferences on Lasers, 1991: 833- 837.

    Liao YB. Study of long time stability in the OFCS[C]∥Proceedings of the International Conferences on Lasers, 1991: 833- 837.

[12] BrianC. International conference on optical fibre sensors in China OFS (C)'91[C]. SPIE, 1991, 1572: 603.

    BrianC. International conference on optical fibre sensors in China OFS (C)'91[C]. SPIE, 1991, 1572: 603.

[13] LiaoY, SongQ. Optical fiber Mach-Zehnder interferometer for smart skins[C]. Fiber Optic Smart Structures and Skins V, 1993, 1798: 186- 192.

    LiaoY, SongQ. Optical fiber Mach-Zehnder interferometer for smart skins[C]. Fiber Optic Smart Structures and Skins V, 1993, 1798: 186- 192.

[14] Zhang PG, Zhao HF, Liao YB. Theoretical analysis and design on optical fiber magneto-optic current sensing head[C]. International Conference on Optical Fibre Sensors in China OFS (C)'91, 1991: 528- 534.

    Zhang PG, Zhao HF, Liao YB. Theoretical analysis and design on optical fiber magneto-optic current sensing head[C]. International Conference on Optical Fibre Sensors in China OFS (C)'91, 1991: 528- 534.

[15] 廖延彪. 高精度光纤油罐群检测系统[ C]∥OFS'93全国光纤传感器学术会议论文集, 1993: 20- 22.

    廖延彪. 高精度光纤油罐群检测系统[ C]∥OFS'93全国光纤传感器学术会议论文集, 1993: 20- 22.

[16] OFS'93全国光纤传感器学术会议论文集[C]FS'93全国光纤传感器学术会议论文集[C]. [出版地不详: 出版者不详], 1993.

    OFS'93全国光纤传感器学术会议论文集[C]FS'93全国光纤传感器学术会议论文集[C]. [出版地不详: 出版者不详], 1993.

[17] 全国光纤传感暨光电器件学术会议论文集[C]国光纤传感暨光电器件学术会议论文集[C]. [出版地不详: 出版者不详], 2004.

    全国光纤传感暨光电器件学术会议论文集[C]国光纤传感暨光电器件学术会议论文集[C]. [出版地不详: 出版者不详], 2004.

[18] 光纤传感技术发展与产业化国际论坛论文集[C]纤传感技术发展与产业化国际论坛论文集[C]. [出版地不详: 出版者不详], 2005.

    光纤传感技术发展与产业化国际论坛论文集[C]纤传感技术发展与产业化国际论坛论文集[C]. [出版地不详: 出版者不详], 2005.

[19] 2010-光纤传感器发展与产业化论坛论文集[C]. [ 出版地不详: 出版者不详], 2010.

    2010-光纤传感器发展与产业化论坛论文集[C]. [ 出版地不详: 出版者不详], 2010.

[20] 2017-中国光纤传感学术会议暨产业化论坛[C]. [ 出版地不详: 出版者不详], 2017.

    2017-中国光纤传感学术会议暨产业化论坛[C]. [ 出版地不详: 出版者不详], 2017.

[21] 姜亚南, 范崇澄, 杨雪郁. 光学陀螺仪的基本精度极限[J]. 中国激光, 1981, 8(9): 34-41.

    姜亚南, 范崇澄, 杨雪郁. 光学陀螺仪的基本精度极限[J]. 中国激光, 1981, 8(9): 34-41.

    Jiang Y N, Fan C C, Yang X Y. The fundamental precision limit of optical gyros[J]. Chinese Journal of Lasers, 1981, 8(9): 34-41.

    Jiang Y N, Fan C C, Yang X Y. The fundamental precision limit of optical gyros[J]. Chinese Journal of Lasers, 1981, 8(9): 34-41.

[22] 张惟叙, 杜新政. 闭环光纤陀螺研究[J]. 航空学报, 1991, 12(4): B148-B153.

    张惟叙, 杜新政. 闭环光纤陀螺研究[J]. 航空学报, 1991, 12(4): B148-B153.

    Zhang W X, Du X Z. Experimental research of a closed-loop fiber-optic gyroscope[J]. Acta Aeronautica et Astronautica Sinica, 1991, 12(4): B148-B153.

    Zhang W X, Du X Z. Experimental research of a closed-loop fiber-optic gyroscope[J]. Acta Aeronautica et Astronautica Sinica, 1991, 12(4): B148-B153.

[23] 靳伟, 张惟叙. 应用电光移频器的新型光纤陀螺方案分析[J]. 北京航空航天大学学报, 1989( 3): 79- 85.

    靳伟, 张惟叙. 应用电光移频器的新型光纤陀螺方案分析[J]. 北京航空航天大学学报, 1989( 3): 79- 85.

    JinW, Zhang WX. Analysis of fiber optic gyroscopes using E/O frequency shifers[J]. Journal of Beijing University of Aeronautics and Astronautics, 1989( 3): 79- 85.

    JinW, Zhang WX. Analysis of fiber optic gyroscopes using E/O frequency shifers[J]. Journal of Beijing University of Aeronautics and Astronautics, 1989( 3): 79- 85.

[24] 王巍. 闭环光纤陀螺的输出频率误差[J]. 导弹与航天运载技术, 1994( 4): 23- 30.

    王巍. 闭环光纤陀螺的输出频率误差[J]. 导弹与航天运载技术, 1994( 4): 23- 30.

    WangW. A new research on evaluation of combat effectiveness for weapon system[J]. Missiles and Space Vehicles, 1994( 4): 23- 30.

    WangW. A new research on evaluation of combat effectiveness for weapon system[J]. Missiles and Space Vehicles, 1994( 4): 23- 30.

[25] 周柯江, 王涛, 张春熹, 等. 具有低长期漂移的单模光纤陀螺[J]. 仪器仪表学报, 1996, 17(6): 584-587.

    周柯江, 王涛, 张春熹, 等. 具有低长期漂移的单模光纤陀螺[J]. 仪器仪表学报, 1996, 17(6): 584-587.

    Zhou K J, Wang T, Zhang C X, et al. A single-mode fiber optic gyroscope with low long-term drift[J]. Chinese Journal of Scientific Instrument, 1996, 17(6): 584-587.

    Zhou K J, Wang T, Zhang C X, et al. A single-mode fiber optic gyroscope with low long-term drift[J]. Chinese Journal of Scientific Instrument, 1996, 17(6): 584-587.

[26] 马静, 张维叙. 开环全保偏光纤陀螺研究[J]. 北京航空航天大学学报, 1994, 20(3): 351-356.

    马静, 张维叙. 开环全保偏光纤陀螺研究[J]. 北京航空航天大学学报, 1994, 20(3): 351-356.

    Ma J, Zhang W X. Research of open-loop all PM-fiber gyroscope[J]. Journal of Beijing University of Aeronautics and Astronautics, 1994, 20(3): 351-356.

    Ma J, Zhang W X. Research of open-loop all PM-fiber gyroscope[J]. Journal of Beijing University of Aeronautics and Astronautics, 1994, 20(3): 351-356.

[27] 叶炜, 倪永锋, 赵为党, 等. 闭环光纤陀螺全数字式信号检测方法研究[J]. 光子学报, 1998, 27(4): 334-337.

    叶炜, 倪永锋, 赵为党, 等. 闭环光纤陀螺全数字式信号检测方法研究[J]. 光子学报, 1998, 27(4): 334-337.

    Ye W, Ni Y F, Zhao W D, et al. Research on digital signal detection method in closed loop fiber gyros[J]. Acta Photonica Sinica, 1998, 27(4): 334-337.

    Ye W, Ni Y F, Zhao W D, et al. Research on digital signal detection method in closed loop fiber gyros[J]. Acta Photonica Sinica, 1998, 27(4): 334-337.

[28] 张春熹, 宋凝芳, 杜新政, 等. 基于DSP的全数字闭环光纤陀螺[J]. 北京航空航天大学学报, 1998, 24(6): 695-698.

    张春熹, 宋凝芳, 杜新政, 等. 基于DSP的全数字闭环光纤陀螺[J]. 北京航空航天大学学报, 1998, 24(6): 695-698.

    Zhang C X, Song N F, Du X Z, et al. All digital DSP based closed-loop fiber optic gyroscope[J]. Journal of Beijing University of Aeronautics and Astronautics, 1998, 24(6): 695-698.

    Zhang C X, Song N F, Du X Z, et al. All digital DSP based closed-loop fiber optic gyroscope[J]. Journal of Beijing University of Aeronautics and Astronautics, 1998, 24(6): 695-698.

[29] 王巍, 杨清生, 王学锋. 光纤陀螺的空间应用及其关键技术[J]. 红外与激光工程, 2006, 35(5): 509-512.

    王巍, 杨清生, 王学锋. 光纤陀螺的空间应用及其关键技术[J]. 红外与激光工程, 2006, 35(5): 509-512.

    Wang W, Yang Q S, Wang X F. Application of fiber-optic gyro in space and key technology[J]. Infrared and Laser Engineering, 2006, 35(5): 509-512.

    Wang W, Yang Q S, Wang X F. Application of fiber-optic gyro in space and key technology[J]. Infrared and Laser Engineering, 2006, 35(5): 509-512.

[30] YangY, YuS, ZhengZ, et al. Erbium-doped superfluorescent fiber source for fiber optic gyroscope[C]. Advanced Sensor Systems and Applications, 2002: 111- 115.

    YangY, YuS, ZhengZ, et al. Erbium-doped superfluorescent fiber source for fiber optic gyroscope[C]. Advanced Sensor Systems and Applications, 2002: 111- 115.

[31] Li C, Yang J, Yu Z, et al. Dynamic range beyond 100 dB for polarization mode coupling measurement based on white light interferometer[J]. Optics Express, 2016, 24(15): 16247-16257.

    Li C, Yang J, Yu Z, et al. Dynamic range beyond 100 dB for polarization mode coupling measurement based on white light interferometer[J]. Optics Express, 2016, 24(15): 16247-16257.

[32] YangY, YeM, DuanW, et al. Polarization maintaining photonic crystal fiber IFOG[C]. OFS2012 22 nd International Conference on Optical Fiber Sensors , 2012: 84210D.

    YangY, YeM, DuanW, et al. Polarization maintaining photonic crystal fiber IFOG[C]. OFS2012 22 nd International Conference on Optical Fiber Sensors , 2012: 84210D.

[33] 北京航空航天大学仪器科学与光电工程学院. 光子晶体光纤陀螺首飞成功[OL]. ( 2017-07-04)[2017-11-22]. http:∥www.buaa.edu.cn/info/1392/6212.htm.

    北京航空航天大学仪器科学与光电工程学院. 光子晶体光纤陀螺首飞成功[OL]. ( 2017-07-04)[2017-11-22]. http:∥www.buaa.edu.cn/info/1392/6212.htm.

[34] Feng L, Ren X, Deng X, et al. Analysis of a hollow core photonic bandgap fiber ring resonator based on micro-optical structure[J]. Optics Express, 2012, 20(16): 18202-18208.

    Feng L, Ren X, Deng X, et al. Analysis of a hollow core photonic bandgap fiber ring resonator based on micro-optical structure[J]. Optics Express, 2012, 20(16): 18202-18208.

[35] Ma H, Zhang J, Wang L, et al. Development and evaluation of optical passive resonant gyroscopes[J]. Journal of Lightwave Technology, 2017, 35(16): 3546-3554.

    Ma H, Zhang J, Wang L, et al. Development and evaluation of optical passive resonant gyroscopes[J]. Journal of Lightwave Technology, 2017, 35(16): 3546-3554.

[36] 王勇, 廖延彪. 一种新型非接触式光纤振动传感器的研究[J]. 仪器仪表学报, 1999, 20(6): 637-640.

    王勇, 廖延彪. 一种新型非接触式光纤振动传感器的研究[J]. 仪器仪表学报, 1999, 20(6): 637-640.

    Wang Y, Liao Y B. Study of a new non-contact fiber optic vibration sensor[J]. Chinese Journal of Scientific Instrument, 1999, 20(6): 637-640.

    Wang Y, Liao Y B. Study of a new non-contact fiber optic vibration sensor[J]. Chinese Journal of Scientific Instrument, 1999, 20(6): 637-640.

[37] MengZ, HuY, NiM, et al. Development of a 32-element fibre optic hydrophone system[C]. SPIE, 2004, 5589: 114- 119.

    MengZ, HuY, NiM, et al. Development of a 32-element fibre optic hydrophone system[C]. SPIE, 2004, 5589: 114- 119.

[38] 倪明, 李秀林, 张仁和, 等. 全光光纤水听器系统海上试验[J]. 声学学报, 2004, 29(6): 539-543.

    倪明, 李秀林, 张仁和, 等. 全光光纤水听器系统海上试验[J]. 声学学报, 2004, 29(6): 539-543.

    Ni M, Li X L, Zhang R H, et al. Seatests of an all-optical fiber-optic hydrophone system[J]. Acta Acustica, 2004, 29(6): 539-543.

    Ni M, Li X L, Zhang R H, et al. Seatests of an all-optical fiber-optic hydrophone system[J]. Acta Acustica, 2004, 29(6): 539-543.

[39] 何向阁. 分布式光纤声振动传感关键技术研究[D]. 北京: 清华大学, 2017.

    何向阁. 分布式光纤声振动传感关键技术研究[D]. 北京: 清华大学, 2017.

[40] 刘飞. 基于外差方案的光纤微地震监测系统研究[D]. 北京: 清华大学, 2017.

    刘飞. 基于外差方案的光纤微地震监测系统研究[D]. 北京: 清华大学, 2017.

[41] Zhang W, Liu Y, Li F. Fiber Bragg grating hydrophone with high sensitivity[J]. Chinese Optics Letters, 2008, 6(9): 631-633.

    Zhang W, Liu Y, Li F. Fiber Bragg grating hydrophone with high sensitivity[J]. Chinese Optics Letters, 2008, 6(9): 631-633.

[42] Wang J, Luo H, Meng Z, et al. Experimental research of an all-polarization-maintaining optical fiber vector hydrophone[J]. Journal of Lightwave Technology, 2012, 30(8): 1178-1184.

    Wang J, Luo H, Meng Z, et al. Experimental research of an all-polarization-maintaining optical fiber vector hydrophone[J]. Journal of Lightwave Technology, 2012, 30(8): 1178-1184.

[43] 康崇, 张敏, 陈洪娟, 等. 薄壁圆柱壳体压差式光纤矢量水听器[J]. 中国激光, 2008, 35(8): 1214-1219.

    康崇, 张敏, 陈洪娟, 等. 薄壁圆柱壳体压差式光纤矢量水听器[J]. 中国激光, 2008, 35(8): 1214-1219.

    Kang C, Zhang M, Chen H J, et al. Pressure optical fiber vector hydrophone made of thin-walled cylindrical shell[J]. Chinese Journal of Lasers, 2008, 35(8): 1214-1219.

    Kang C, Zhang M, Chen H J, et al. Pressure optical fiber vector hydrophone made of thin-walled cylindrical shell[J]. Chinese Journal of Lasers, 2008, 35(8): 1214-1219.

[44] 罗洪, 熊水东, 胡永明, 等. 三分量全保偏光纤加速度传感器的研究[J]. 中国激光, 2005, 32(10): 1382-1386.

    罗洪, 熊水东, 胡永明, 等. 三分量全保偏光纤加速度传感器的研究[J]. 中国激光, 2005, 32(10): 1382-1386.

    Luo H, Xiong S D, Hu Y M, et al. Research on three-component all polarization-maintaining fiber optic accelerometer[J]. Chinese Journal of Lasers, 2005, 32(10): 1382-1386.

    Luo H, Xiong S D, Hu Y M, et al. Research on three-component all polarization-maintaining fiber optic accelerometer[J]. Chinese Journal of Lasers, 2005, 32(10): 1382-1386.

[45] 张华勇, 王利威, 施清平, 等. 光纤水听器时分复用系统通过3×3耦合器信号解调的一种新算法[J]. 中国激光, 2011, 38(5): 0505011.

    张华勇, 王利威, 施清平, 等. 光纤水听器时分复用系统通过3×3耦合器信号解调的一种新算法[J]. 中国激光, 2011, 38(5): 0505011.

    Zhang H Y, Wang L W, Shi Q P, et al. A new demodulation method for time division multiplexing system of fiber-optic hydrophone using a 3×3 couple[J]. Chinese Journal of Lasers, 2011, 38(5): 0505011.

    Zhang H Y, Wang L W, Shi Q P, et al. A new demodulation method for time division multiplexing system of fiber-optic hydrophone using a 3×3 couple[J]. Chinese Journal of Lasers, 2011, 38(5): 0505011.

[46] Jiang Y. Wavelength division multiplexing addressed four-element fiber optical laser hydrophone array[J]. Applied Optics, 2007, 46(15): 2939-2948.

    Jiang Y. Wavelength division multiplexing addressed four-element fiber optical laser hydrophone array[J]. Applied Optics, 2007, 46(15): 2939-2948.

[47] 陈伟, 孟洲. 相位调制对光纤受激布里渊散射阈值的影响[J]. 中国激光, 2011, 38(3): 0305002.

    陈伟, 孟洲. 相位调制对光纤受激布里渊散射阈值的影响[J]. 中国激光, 2011, 38(3): 0305002.

    Chen W, Meng Z. Effects of phase modulation on threshold of stimulated Brillouin scattering in optical fibers[J]. Chinese Journal of Lasers, 2011, 38(3): 0305002.

    Chen W, Meng Z. Effects of phase modulation on threshold of stimulated Brillouin scattering in optical fibers[J]. Chinese Journal of Lasers, 2011, 38(3): 0305002.

[48] 曹春燕, 熊水东, 胡正良, 等. 光纤水听器 200 km 无中继传输系统噪声研究[J]. 光学学报, 2013, 33(4): 0406006.

    曹春燕, 熊水东, 胡正良, 等. 光纤水听器 200 km 无中继传输系统噪声研究[J]. 光学学报, 2013, 33(4): 0406006.

    Cao C Y, Xiong S D, Hu Z L, et al. Noise analysis of repeaterless long-Haul fiber-optic hydrophone systems with the fiber length up to 200 km[J]. Acta Optica Sinica, 2013, 33(4): 0406006.

    Cao C Y, Xiong S D, Hu Z L, et al. Noise analysis of repeaterless long-Haul fiber-optic hydrophone systems with the fiber length up to 200 km[J]. Acta Optica Sinica, 2013, 33(4): 0406006.

[49] Chen M, Meng Z, Tu X, et al. Low-noise, single-frequency, single-polarization Brillouin/erbium fiber laser[J]. Optics Letters, 2013, 38(12): 2041-2043.

    Chen M, Meng Z, Tu X, et al. Low-noise, single-frequency, single-polarization Brillouin/erbium fiber laser[J]. Optics Letters, 2013, 38(12): 2041-2043.

[50] HuY, HuZ, LuoH, et al. Recent progress toward fiber optic hydrophone research, application and commercialization in China[C]. OFS2012 22 nd International Conference on Optical Fiber Sensors , 2012: 84210Q.

    HuY, HuZ, LuoH, et al. Recent progress toward fiber optic hydrophone research, application and commercialization in China[C]. OFS2012 22 nd International Conference on Optical Fiber Sensors , 2012: 84210Q.

[51] 江毅. 光纤光栅及其传感器的应用[D]. 重庆: 重庆大学, 1996.

    江毅. 光纤光栅及其传感器的应用[D]. 重庆: 重庆大学, 1996.

[52] 王向阳. 光纤布拉格光栅制作及其传感特性研究[D]. 北京: 清华大学, 1997.

    王向阳. 光纤布拉格光栅制作及其传感特性研究[D]. 北京: 清华大学, 1997.

[53] 靳伟, 廖延彪, 张志鹏. 导波光学传感器: 原理与技术[M]. 北京: 科学出版社, 1998.

    靳伟, 廖延彪, 张志鹏. 导波光学传感器: 原理与技术[M]. 北京: 科学出版社, 1998.

[54] 靳伟, 阮双琛. 光纤传感技术新进展[M]. 北京: 科学出版社, 2005.

    靳伟, 阮双琛. 光纤传感技术新进展[M]. 北京: 科学出版社, 2005.

[55] 饶云江, 王一平, 朱涛. 光纤光栅原理及应用[M]. 北京: 科学出版社, 2006.

    饶云江, 王一平, 朱涛. 光纤光栅原理及应用[M]. 北京: 科学出版社, 2006.

[56] 江毅. 高级光纤传感技术[M]. 北京: 科学出版社, 2009.

    江毅. 高级光纤传感技术[M]. 北京: 科学出版社, 2009.

[57] 廖延彪, 黎敏, 阎春生. 现代光信息传感原理[M]. 2版. 北京: 清华大学出版社, 2016.

    廖延彪, 黎敏, 阎春生. 现代光信息传感原理[M]. 2版. 北京: 清华大学出版社, 2016.

    Liao YB, LiM, Yan CS. Principles of contemporary optical information sensing[M]. 2nd ed. Beijing: Tsinghua University Press, 2016.

    Liao YB, LiM, Yan CS. Principles of contemporary optical information sensing[M]. 2nd ed. Beijing: Tsinghua University Press, 2016.

[58] 姜德生, 高雪清. 一类密集型分布式 FBG 传感方法[J]. 激光与红外, 2006, 36(10): 960-962.

    姜德生, 高雪清. 一类密集型分布式 FBG 传感方法[J]. 激光与红外, 2006, 36(10): 960-962.

    Jiang D S, Gao X Q. The method of FBG sensing for a sort of dense distributed measurement[J]. Laser and Infrared, 2006, 36(10): 960-962.

    Jiang D S, Gao X Q. The method of FBG sensing for a sort of dense distributed measurement[J]. Laser and Infrared, 2006, 36(10): 960-962.

[59] 乔学光, 韩鹏, 贾振安, 等. 光纤光栅温度压力同时区分测量技术研究[J]. 光电子·激光, 2009, 20(9): 1186-1188.

    乔学光, 韩鹏, 贾振安, 等. 光纤光栅温度压力同时区分测量技术研究[J]. 光电子·激光, 2009, 20(9): 1186-1188.

    Qiao X G, Han P, Jia Z A, et al. Research on simultaneous discriminating measurement of temperature and pressure using fiber grating sensing technology[J]. Journal of Optoelectronics·Lasers, 2009, 20(9): 1186-1188.

    Qiao X G, Han P, Jia Z A, et al. Research on simultaneous discriminating measurement of temperature and pressure using fiber grating sensing technology[J]. Journal of Optoelectronics·Lasers, 2009, 20(9): 1186-1188.

[60] Qiao X, Wang Y, Yang H. et al. Ultrahigh-temperature chirped fiber Bragg grating through thermal activation[J]. IEEE Photonics Technology Letters, 2015, 27(12): 1305-1308.

    Qiao X, Wang Y, Yang H. et al. Ultrahigh-temperature chirped fiber Bragg grating through thermal activation[J]. IEEE Photonics Technology Letters, 2015, 27(12): 1305-1308.

[61] Zhang J, Qiao X, Liu F, et al. A tunable erbium-doped fiber laser based on an MZ interferometer and a birefringence fiber filter[J]. Journal of Optics, 2011, 14(1): 015402.

    Zhang J, Qiao X, Liu F, et al. A tunable erbium-doped fiber laser based on an MZ interferometer and a birefringence fiber filter[J]. Journal of Optics, 2011, 14(1): 015402.

[62] 周红, 乔学光, 李娟妮, 等. 用于光纤光栅封装的环氧胶粘剂纳米改性研究[J]. 光电子·激光, 2009, 20(5): 590-594.

    周红, 乔学光, 李娟妮, 等. 用于光纤光栅封装的环氧胶粘剂纳米改性研究[J]. 光电子·激光, 2009, 20(5): 590-594.

    Zhou H, Qiao X G, Li J N, et al. Study on property modification with nanometric particles for epoxy adhensive agent used to coat the fiber Bragg grating[J]. Journal of Optoelectronics·Lasers, 2009, 20(5): 590-594.

    Zhou H, Qiao X G, Li J N, et al. Study on property modification with nanometric particles for epoxy adhensive agent used to coat the fiber Bragg grating[J]. Journal of Optoelectronics·Lasers, 2009, 20(5): 590-594.

[63] Liu Q, Tokunaga T, He Z. Ultra-high-resolution large-dynamic-range optical fiber static strain sensor using Pound-Drever-Hall technique[J]. Optics Letters, 2011, 36(20): 4044-4046.

    Liu Q, Tokunaga T, He Z. Ultra-high-resolution large-dynamic-range optical fiber static strain sensor using Pound-Drever-Hall technique[J]. Optics Letters, 2011, 36(20): 4044-4046.

[64] Liu Q, Tokunaga T, He Z. Sub-nano resolution fiber-optic static strain sensor using a sideband interrogation technique[J]. Optics Letters, 2012, 37(3): 434-436.

    Liu Q, Tokunaga T, He Z. Sub-nano resolution fiber-optic static strain sensor using a sideband interrogation technique[J]. Optics Letters, 2012, 37(3): 434-436.

[65] Chen J, Liu Q, Fan X, et al. Ultrahigh resolution optical fiber strain sensor using dual Pound-Drever-Hall feedback loops[J]. Optics Letters, 2016, 41(5): 1066-1069.

    Chen J, Liu Q, Fan X, et al. Ultrahigh resolution optical fiber strain sensor using dual Pound-Drever-Hall feedback loops[J]. Optics Letters, 2016, 41(5): 1066-1069.

[66] Wang C, He J, Zhang J, et al. Bragg gratings inscribed in selectively inflated photonic crystal fibers[J]. Optics Express, 2017, 25(23): 28442-28450.

    Wang C, He J, Zhang J, et al. Bragg gratings inscribed in selectively inflated photonic crystal fibers[J]. Optics Express, 2017, 25(23): 28442-28450.

[67] He J, Wang Y, Liao C, et al. Negative-index gratings formed by femtosecond laser overexposure and thermal regeneration[J]. Scientific Reports, 2016, 6: 23379.

    He J, Wang Y, Liao C, et al. Negative-index gratings formed by femtosecond laser overexposure and thermal regeneration[J]. Scientific Reports, 2016, 6: 23379.

[68] Han P, Li Z, Chen L, et al. A high-speed distributed ultra-weak FBG sensing system with high resolution[J]. IEEE Photonics Technology Letters, 2017, 29(15): 1249-1252.

    Han P, Li Z, Chen L, et al. A high-speed distributed ultra-weak FBG sensing system with high resolution[J]. IEEE Photonics Technology Letters, 2017, 29(15): 1249-1252.

[69] Hu C, Wen H, Bai W. A novel interrogation system for large scale sensing network with identical ultra-weak fiber Bragg gratings[J]. Journal of Lightwave Technology, 2014, 32(7): 1406-1411.

    Hu C, Wen H, Bai W. A novel interrogation system for large scale sensing network with identical ultra-weak fiber Bragg gratings[J]. Journal of Lightwave Technology, 2014, 32(7): 1406-1411.

[70] Guo H, Liu F, Yuan Y, et al. Ultra-weak FBG and its refractive index distribution in the drawing optical fiber[J]. Optics Express, 2015, 23(4): 4829-4838.

    Guo H, Liu F, Yuan Y, et al. Ultra-weak FBG and its refractive index distribution in the drawing optical fiber[J]. Optics Express, 2015, 23(4): 4829-4838.

[71] Yang M, Bai W, Guo H, et al. Huge capacity fiber-optic sensing network based on ultra-weak draw tower gratings[J]. Photonic Sensors, 2016, 6(1): 26-41.

    Yang M, Bai W, Guo H, et al. Huge capacity fiber-optic sensing network based on ultra-weak draw tower gratings[J]. Photonic Sensors, 2016, 6(1): 26-41.

[72] Ou Y, Zhou C, Qian L, et al. Large-capacity multiplexing of near-identical weak fiber Bragg gratings using frequency-shifted interferometry[J]. Optics Express, 2015, 23(24): 31484-31495.

    Ou Y, Zhou C, Qian L, et al. Large-capacity multiplexing of near-identical weak fiber Bragg gratings using frequency-shifted interferometry[J]. Optics Express, 2015, 23(24): 31484-31495.

[73] Xu R, Guo H, Liang L. Distributed fiber optic interferometric geophone system based on draw tower gratings[J]. Photonic Sensors, 2017, 7(3): 246-252.

    Xu R, Guo H, Liang L. Distributed fiber optic interferometric geophone system based on draw tower gratings[J]. Photonic Sensors, 2017, 7(3): 246-252.

[74] 许儒泉, 郭会勇, 黎威, 等. 基于全光栅光纤的超窄线宽随机光纤激光器[J]. 中国激光, 2016, 43(12): 1201005.

    许儒泉, 郭会勇, 黎威, 等. 基于全光栅光纤的超窄线宽随机光纤激光器[J]. 中国激光, 2016, 43(12): 1201005.

    Xu R Q, Guo H Y, Li W, et al. Ultra-narrow linewidth random fiber laser based on all grating fiber[J]. Chinese Journal of Lasers, 2016, 43(12): 1201005.

    Xu R Q, Guo H Y, Li W, et al. Ultra-narrow linewidth random fiber laser based on all grating fiber[J]. Chinese Journal of Lasers, 2016, 43(12): 1201005.

[75] Yao Y, Li Z, Wang Y, et al. Performance optimization design for a high-speed weak FBG interrogation system based on DFB laser[J]. Sensors, 2017, 17(7): 1472.

    Yao Y, Li Z, Wang Y, et al. Performance optimization design for a high-speed weak FBG interrogation system based on DFB laser[J]. Sensors, 2017, 17(7): 1472.

[76] Zheng Y, Yu H, Guo H, et al. Analysis of the spectrum distortions of weak fiber Bragg gratings fabricated In-line on a draw tower by the phase mask technique[J]. Journal of Lightwave Technology, 2015, 33(12): 2670-2673.

    Zheng Y, Yu H, Guo H, et al. Analysis of the spectrum distortions of weak fiber Bragg gratings fabricated In-line on a draw tower by the phase mask technique[J]. Journal of Lightwave Technology, 2015, 33(12): 2670-2673.

[77] ZhengY, YuH, GuoH, et al. Theoretical calculations of crosstalk and time delay in identical FBG array in PM fiber[C]. Sensors, 2016: 16582151.

    ZhengY, YuH, GuoH, et al. Theoretical calculations of crosstalk and time delay in identical FBG array in PM fiber[C]. Sensors, 2016: 16582151.

[78] Wang Z, Wen H, Luo Z, et al. Time division multiplexing of 106 weak fiber Bragg gratings using a ring cavity configuration[J]. Photonic Sensors, 2016, 6(2): 132-136.

    Wang Z, Wen H, Luo Z, et al. Time division multiplexing of 106 weak fiber Bragg gratings using a ring cavity configuration[J]. Photonic Sensors, 2016, 6(2): 132-136.

[79] Guo H, Qian L, Zhou C, et al. Crosstalk and ghost gratings in a large-scale weak fiber bragg grating array[J]. Journal of Lightwave Technology, 2017, 35(10): 2032-2036.

    Guo H, Qian L, Zhou C, et al. Crosstalk and ghost gratings in a large-scale weak fiber bragg grating array[J]. Journal of Lightwave Technology, 2017, 35(10): 2032-2036.

[80] 张在宣, 郭宁, 余向东, 等. 10 km LD 分布式光纤温度传感器系统[J]. 激光与光电子学进展, 1999, 36(9): 43-46.

    张在宣, 郭宁, 余向东, 等. 10 km LD 分布式光纤温度传感器系统[J]. 激光与光电子学进展, 1999, 36(9): 43-46.

[81] Zhang ZX, Liu HL, GuoN, et al. 30 km distributed optical fiber Raman photons temperature lidar[C]. SPIE, 2003, 4893: 78- 82.

    Zhang ZX, Liu HL, GuoN, et al. 30 km distributed optical fiber Raman photons temperature lidar[C]. SPIE, 2003, 4893: 78- 82.

[82] Zhou D, Dong Y, Wang B, et al. Slope-assisted BOTDA based on vector SBS and frequency-agile technique for wide-strain-range dynamic measurements[J]. Optics Express, 2017, 25(3): 1889-1902.

    Zhou D, Dong Y, Wang B, et al. Slope-assisted BOTDA based on vector SBS and frequency-agile technique for wide-strain-range dynamic measurements[J]. Optics Express, 2017, 25(3): 1889-1902.

[83] Teng L, Zhang H, Dong Y, et al. Temperature-compensated distributed hydrostatic pressure sensor with a thin-diameter polarization-maintaining photonic crystal fiber based on Brillouin dynamic gratings[J]. Optics Letters, 2016, 41(18): 4413-4416.

    Teng L, Zhang H, Dong Y, et al. Temperature-compensated distributed hydrostatic pressure sensor with a thin-diameter polarization-maintaining photonic crystal fiber based on Brillouin dynamic gratings[J]. Optics Letters, 2016, 41(18): 4413-4416.

[84] Dong Y, Teng L, Tong P, et al. High-sensitivity distributed transverse load sensor with an elliptical-core fiber based on Brillouin dynamic gratings[J]. Optics Letters, 2015, 40(21): 5003-5006.

    Dong Y, Teng L, Tong P, et al. High-sensitivity distributed transverse load sensor with an elliptical-core fiber based on Brillouin dynamic gratings[J]. Optics Letters, 2015, 40(21): 5003-5006.

[85] Dong Y, Xu P, Zhang H, et al. Characterization of evolution of mode coupling in a graded-index polymer optical fiber by using Brillouin optical time-domain analysis[J]. Optics Express, 2014, 22(22): 26510-26516.

    Dong Y, Xu P, Zhang H, et al. Characterization of evolution of mode coupling in a graded-index polymer optical fiber by using Brillouin optical time-domain analysis[J]. Optics Express, 2014, 22(22): 26510-26516.

[86] Dong Y, Jiang T, Teng L, et al. Sub-MHz ultrahigh-resolution optical spectrometry based on Brillouin dynamic gratings[J]. Optics Letters, 2014, 39(10): 2967-2970.

    Dong Y, Jiang T, Teng L, et al. Sub-MHz ultrahigh-resolution optical spectrometry based on Brillouin dynamic gratings[J]. Optics Letters, 2014, 39(10): 2967-2970.

[87] Jia X H, Rao Y J, Chang L, et al. Enhanced sensing performance in long distance Brillouin optical time-domain analyzer based on Raman amplification: Theoretical and experimental investigation[J]. Journal of Lightwave Technology, 2010, 28(11): 1624-1630.

    Jia X H, Rao Y J, Chang L, et al. Enhanced sensing performance in long distance Brillouin optical time-domain analyzer based on Raman amplification: Theoretical and experimental investigation[J]. Journal of Lightwave Technology, 2010, 28(11): 1624-1630.

[88] 张超, 饶云江, 贾新鸿, 等. 基于双向拉曼放大的布里渊光时域分析系统[J]. 物理学报, 2010, 59(8): 5523-5527.

    张超, 饶云江, 贾新鸿, 等. 基于双向拉曼放大的布里渊光时域分析系统[J]. 物理学报, 2010, 59(8): 5523-5527.

    Zhang C, Rao Y J, Jia X H, et al. Brillouin optical time domain analyzer based on bi-directional Raman amplification[J]. Acta Physica Sinica, 2010, 59(8): 5523-5527.

    Zhang C, Rao Y J, Jia X H, et al. Brillouin optical time domain analyzer based on bi-directional Raman amplification[J]. Acta Physica Sinica, 2010, 59(8): 5523-5527.

[89] 张超, 饶云江, 贾新鸿, 等. 光脉冲编码对基于拉曼放大的布里渊光时域分析系统的影响[J]. 物理学报, 2011, 60(10): 104211.

    张超, 饶云江, 贾新鸿, 等. 光脉冲编码对基于拉曼放大的布里渊光时域分析系统的影响[J]. 物理学报, 2011, 60(10): 104211.

    Zhang C, Rao Y J, Jia X H, et al. Influence of optical simple pulse coding on the Brillouin optical time domain analyzer based on bi-directional Raman amplification[J]. Acta Physica Sinica, 2011, 60(10): 104211.

    Zhang C, Rao Y J, Jia X H, et al. Influence of optical simple pulse coding on the Brillouin optical time domain analyzer based on bi-directional Raman amplification[J]. Acta Physica Sinica, 2011, 60(10): 104211.

[90] Wang F, Zhan W, Lu Y, et al. Determining the change of Brillouin frequency shift by using the similarity matching method[J]. Journal of Lightwave Technology, 2015, 33(19): 4101-4108.

    Wang F, Zhan W, Lu Y, et al. Determining the change of Brillouin frequency shift by using the similarity matching method[J]. Journal of Lightwave Technology, 2015, 33(19): 4101-4108.

[91] Zhang Y, Wu X, Ying Z, et al. Performance improvement for long-range BOTDR sensing system based on high extinction ratio modulator[J]. Electronics Letters, 2014, 50(14): 1014-1016.

    Zhang Y, Wu X, Ying Z, et al. Performance improvement for long-range BOTDR sensing system based on high extinction ratio modulator[J]. Electronics Letters, 2014, 50(14): 1014-1016.

[92] Tu G, Zhang X, Zhang Y, et al. Strain variation measurement with short-time Fourier transform-based Brillouin optical time-domain reflectometry sensing system[J]. Electronics Letters, 2014, 50(22): 1624-1626.

    Tu G, Zhang X, Zhang Y, et al. Strain variation measurement with short-time Fourier transform-based Brillouin optical time-domain reflectometry sensing system[J]. Electronics Letters, 2014, 50(22): 1624-1626.

[93] 宋牟平, 裘超. 普通单模光纤的长距离双参量传感布里渊光时域反射计[J]. 光学学报, 2010, 30(4): 954-958.

    宋牟平, 裘超. 普通单模光纤的长距离双参量传感布里渊光时域反射计[J]. 光学学报, 2010, 30(4): 954-958.

    Song M P, Qiu C. Long-distance Brillouin optical time domain reflectometer with two-parameter sensing for standard single-mode optical fiber[J]. Acta Optica Sinica, 2010, 30(4): 954-958.

    Song M P, Qiu C. Long-distance Brillouin optical time domain reflectometer with two-parameter sensing for standard single-mode optical fiber[J]. Acta Optica Sinica, 2010, 30(4): 954-958.

[94] 宋牟平, 鲍翀, 裘超, 等. 结合布里渊光时域分析和光时域反射计的分布式光纤传感器[J]. 光学学报, 2010, 30(3): 650-654.

    宋牟平, 鲍翀, 裘超, 等. 结合布里渊光时域分析和光时域反射计的分布式光纤传感器[J]. 光学学报, 2010, 30(3): 650-654.

    Song M P, Bao C, Qiu C, et al. A distributed optical-fiber sensor combined Brillouin optical time-domain analyzer with Brillouin optical time-domain reflectometer[J]. Acta Optica Sinica, 2010, 30(3): 650-654.

    Song M P, Bao C, Qiu C, et al. A distributed optical-fiber sensor combined Brillouin optical time-domain analyzer with Brillouin optical time-domain reflectometer[J]. Acta Optica Sinica, 2010, 30(3): 650-654.

[95] Jia X H, Rao Y J, Peng F, et al. Random-lasing-based distributed fiber-optic amplification[J]. Optics Express, 2013, 21(5): 6572-6577.

    Jia X H, Rao Y J, Peng F, et al. Random-lasing-based distributed fiber-optic amplification[J]. Optics Express, 2013, 21(5): 6572-6577.

[96] Jia X H, Rao Y J, Yuan C X, et al. Hybrid distributed Raman amplification combining random fiber laser based 2 nd-order and low-noise LD based 1 st-order pumping [J]. Optics Express, 2013, 21(21): 24611-24619.

    Jia X H, Rao Y J, Yuan C X, et al. Hybrid distributed Raman amplification combining random fiber laser based 2 nd-order and low-noise LD based 1 st-order pumping [J]. Optics Express, 2013, 21(21): 24611-24619.

[97] Dong Y, Zhang H, Chen L, et al. 2 cm spatial-resolution and 2 km range Brillouin optical fiber sensor using a transient differential pulse pair[J]. Applied Optics, 2012, 51(9): 1229-1235.

    Dong Y, Zhang H, Chen L, et al. 2 cm spatial-resolution and 2 km range Brillouin optical fiber sensor using a transient differential pulse pair[J]. Applied Optics, 2012, 51(9): 1229-1235.

[98] Xie S, Pang M, Bao X, et al. Polarization dependence of Brillouin linewidth and peak frequency due to fiber inhomogeneity in single mode fiber and its impact on distributed fiber Brillouin sensing[J]. Optics Express, 2012, 20(6): 6385-6399.

    Xie S, Pang M, Bao X, et al. Polarization dependence of Brillouin linewidth and peak frequency due to fiber inhomogeneity in single mode fiber and its impact on distributed fiber Brillouin sensing[J]. Optics Express, 2012, 20(6): 6385-6399.

[99] 谢尚然. 布里渊散射与干涉中的偏振问题及其分布式传感应用[D]. 北京: 清华大学, 2013.

    谢尚然. 布里渊散射与干涉中的偏振问题及其分布式传感应用[D]. 北京: 清华大学, 2013.

    Xie SR. Polarization properties of Brillouin scattering and interferometry in optical fibers and their applications on distributed fiber sensing[D]. Beijing: Tsinghua University, 2013.

    Xie SR. Polarization properties of Brillouin scattering and interferometry in optical fibers and their applications on distributed fiber sensing[D]. Beijing: Tsinghua University, 2013.

[100] 曹珊. 光纤中布里渊散射的偏振相关问题研究[D]. 北京: 清华大学, 2017.

    曹珊. 光纤中布里渊散射的偏振相关问题研究[D]. 北京: 清华大学, 2017.

[101] Wang Y, Wang B, Wang A. Chaotic correlation optical time domain reflectometer utilizing laser diode[J]. IEEE Photonics Technology Letters, 2008, 20(19): 1636-1638.

    Wang Y, Wang B, Wang A. Chaotic correlation optical time domain reflectometer utilizing laser diode[J]. IEEE Photonics Technology Letters, 2008, 20(19): 1636-1638.

[102] Wang Z, Fan M, Zhang L, et al. Long-range and high-precision correlation optical time-domain reflectometry utilizing an all-fiber chaotic source[J]. Optics Express, 2015, 23(12): 15514-15520.

    Wang Z, Fan M, Zhang L, et al. Long-range and high-precision correlation optical time-domain reflectometry utilizing an all-fiber chaotic source[J]. Optics Express, 2015, 23(12): 15514-15520.

[103] Zhang L, Pan B, Chen G, et al. Long-range and high-resolution correlation optical time-domain reflectometry using a monolithic integrated broadband chaotic laser[J]. Applied Optics, 2017, 56(4): 1253-1256.

    Zhang L, Pan B, Chen G, et al. Long-range and high-resolution correlation optical time-domain reflectometry using a monolithic integrated broadband chaotic laser[J]. Applied Optics, 2017, 56(4): 1253-1256.

[104] Liu Q, Fan X, He Z. Time-gated digital optical frequency domain reflectometry with 1.6 m spatial resolution over entire 110 km range[J]. Optics Express, 2015, 23(20): 25988-25995.

    Liu Q, Fan X, He Z. Time-gated digital optical frequency domain reflectometry with 1.6 m spatial resolution over entire 110 km range[J]. Optics Express, 2015, 23(20): 25988-25995.

[105] Wang S, Fan X, Liu Q, et al. Distributed fiber-optic vibration sensing based on phase extraction from time-gated digital OFDR[J]. Optics Express, 2015, 23(26): 33301-33309.

    Wang S, Fan X, Liu Q, et al. Distributed fiber-optic vibration sensing based on phase extraction from time-gated digital OFDR[J]. Optics Express, 2015, 23(26): 33301-33309.

[106] Ding Z, Yao X S, Liu T, et al. Long-range vibration sensor based on correlation analysis of optical frequency-domain reflectometry signals[J]. Optics Express, 2012, 20(27): 28319-28329.

    Ding Z, Yao X S, Liu T, et al. Long-range vibration sensor based on correlation analysis of optical frequency-domain reflectometry signals[J]. Optics Express, 2012, 20(27): 28319-28329.

[107] Wang S, Fan X, Wang B, et al. Sub-THz-range linearly chirped signals characterized using linear optical sampling technique to enable sub-millimeter resolution for optical sensing applications[J]. Optics Express, 2017, 25(9): 10224-10233.

    Wang S, Fan X, Wang B, et al. Sub-THz-range linearly chirped signals characterized using linear optical sampling technique to enable sub-millimeter resolution for optical sensing applications[J]. Optics Express, 2017, 25(9): 10224-10233.

[108] Lu B, Pan Z, Wang Z, et al. High spatial resolution phase-sensitive optical time domain reflectometer with a frequency-swept pulse[J]. Optics Letters, 2017, 42(3): 391-394.

    Lu B, Pan Z, Wang Z, et al. High spatial resolution phase-sensitive optical time domain reflectometer with a frequency-swept pulse[J]. Optics Letters, 2017, 42(3): 391-394.

[109] 陈伟民, 王宁, 朱永, 等. 实际光源光谱分布对相位型光纤法-珀应变传感器的影响及其实验研究[J]. 中国激光, 2003, 30(1): 88-92.

    陈伟民, 王宁, 朱永, 等. 实际光源光谱分布对相位型光纤法-珀应变传感器的影响及其实验研究[J]. 中国激光, 2003, 30(1): 88-92.

    Chen W M, Wang N, Zhu Y, et al. Experimental study on the affection of Gaussian spectrum of light source on the optical fiber F-P strain sensor[J]. Chinese Journal of Lasers, 2003, 30(1): 88-92.

    Chen W M, Wang N, Zhu Y, et al. Experimental study on the affection of Gaussian spectrum of light source on the optical fiber F-P strain sensor[J]. Chinese Journal of Lasers, 2003, 30(1): 88-92.

[110] 张桂菊, 于清旭. 一种非本征F-P腔型光纤传感器的研究[J]. 仪器仪表学报, 2004, 25(z1): 253-254.

    张桂菊, 于清旭. 一种非本征F-P腔型光纤传感器的研究[J]. 仪器仪表学报, 2004, 25(z1): 253-254.

    Zhang G J, Yu Q X. An investigation of fiber-optics sensor based on extrinsic F-P cavity[J]. Chinese Journal of Scientific Instrument, 2004, 25(z1): 253-254.

    Zhang G J, Yu Q X. An investigation of fiber-optics sensor based on extrinsic F-P cavity[J]. Chinese Journal of Scientific Instrument, 2004, 25(z1): 253-254.

[111] 章鹏, 王军, 朱永, 等. 基于DSP的新型光纤法珀传感解调系统[J]. 仪器仪表学报, 2007, 28(3): 437-440.

    章鹏, 王军, 朱永, 等. 基于DSP的新型光纤法珀传感解调系统[J]. 仪器仪表学报, 2007, 28(3): 437-440.

    Zhang P, Wang J, Zhu Y, et al. Novel demodulation system of optical fiber Fabry-Perot sensor based on DSP[J]. Chinese Journal of Scientific Instrument, 2007, 28(3): 437-440.

    Zhang P, Wang J, Zhu Y, et al. Novel demodulation system of optical fiber Fabry-Perot sensor based on DSP[J]. Chinese Journal of Scientific Instrument, 2007, 28(3): 437-440.

[112] 陆海松, 章鹏, 陈伟民, 等. 光纤法珀应变传感器串并联混合复用的离散腔长变换解调研究[J]. 光子学报, 2007, 36(5): 842-846.

    陆海松, 章鹏, 陈伟民, 等. 光纤法珀应变传感器串并联混合复用的离散腔长变换解调研究[J]. 光子学报, 2007, 36(5): 842-846.

    Lu H S, Zhang P, Chen W M, et al. Study on fiber Fabry-Perot strain sensors series and parallel mixed multiplexing with discrete gap transform[J]. Acta Photonica Sinica, 2007, 36(5): 842-846.

    Lu H S, Zhang P, Chen W M, et al. Study on fiber Fabry-Perot strain sensors series and parallel mixed multiplexing with discrete gap transform[J]. Acta Photonica Sinica, 2007, 36(5): 842-846.

[113] Duan D, Rao Y, Wen W P, et al. In-line all-fibre Fabry-Perot interferometer high temperature sensor formed by large lateral offset splicing[J]. Electronics Letters, 2011, 47(6): 401-403.

    Duan D, Rao Y, Wen W P, et al. In-line all-fibre Fabry-Perot interferometer high temperature sensor formed by large lateral offset splicing[J]. Electronics Letters, 2011, 47(6): 401-403.

[114] 王文辕, 文建湘, 庞拂飞, 等. 飞秒激光制备的全单模光纤法布里-珀罗干涉高温传感器[J]. 中国激光, 2012, 39(10): 1005001.

    王文辕, 文建湘, 庞拂飞, 等. 飞秒激光制备的全单模光纤法布里-珀罗干涉高温传感器[J]. 中国激光, 2012, 39(10): 1005001.

    Wang W Y, Wen J X, Pang F F, et al. All single-mode fiber Fabry-Perot interferometric high temperature sensor fabricated with femtosecond laser[J]. Chinese Journal of Lasers, 2012, 39(10): 1005001.

    Wang W Y, Wen J X, Pang F F, et al. All single-mode fiber Fabry-Perot interferometric high temperature sensor fabricated with femtosecond laser[J]. Chinese Journal of Lasers, 2012, 39(10): 1005001.

[115] Jiang Y, Tang C. Passive interrogation of an extrinsic Fabry-Pérot interferometer using a three-wavelength method[J]. Optical Engineering, 2009, 48(6): 064401-064405.

    Jiang Y, Tang C. Passive interrogation of an extrinsic Fabry-Pérot interferometer using a three-wavelength method[J]. Optical Engineering, 2009, 48(6): 064401-064405.

[116] Jiang Y, Tang C. Fourier transform white-light interferometry based spatial frequency-division multiplexing of extrinsic Fabry-Pérot interferometric sensors[J]. Review of Scientific Instruments, 2008, 79(10): 106105.

    Jiang Y, Tang C. Fourier transform white-light interferometry based spatial frequency-division multiplexing of extrinsic Fabry-Pérot interferometric sensors[J]. Review of Scientific Instruments, 2008, 79(10): 106105.

[117] Jiang Y. High-resolution interrogation technique for fiber optic extrinsic Fabry-Perot interferometric sensors by the peak-to-peak method[J]. Applied Optics, 2008, 47(7): 925-932.

    Jiang Y. High-resolution interrogation technique for fiber optic extrinsic Fabry-Perot interferometric sensors by the peak-to-peak method[J]. Applied Optics, 2008, 47(7): 925-932.

[118] Lou J, Wang Y, Tong L. Microfiber optical sensors: A review[J]. Sensors, 2014, 14(4): 5823-5844.

    Lou J, Wang Y, Tong L. Microfiber optical sensors: A review[J]. Sensors, 2014, 14(4): 5823-5844.

[119] Guo X, Ying Y, Tong L. Photonic nanowires: From subwavelength waveguides to optical sensors[J]. Accounts of Chemical Research, 2013, 47(2): 656-666.

    Guo X, Ying Y, Tong L. Photonic nanowires: From subwavelength waveguides to optical sensors[J]. Accounts of Chemical Research, 2013, 47(2): 656-666.

[120] Kou J L, Ding M, Feng J, et al. Microfiber-based Bragg gratings for sensing applications: A review[J]. Sensors, 2012, 12(7): 8861-8876.

    Kou J L, Ding M, Feng J, et al. Microfiber-based Bragg gratings for sensing applications: A review[J]. Sensors, 2012, 12(7): 8861-8876.

[121] Sun D, Guo T, Ran Y, et al. In-situ DNA hybridization detection with a reflective microfiber grating biosensor[J]. Biosensors and Bioelectronics, 2014, 61: 541-546.

    Sun D, Guo T, Ran Y, et al. In-situ DNA hybridization detection with a reflective microfiber grating biosensor[J]. Biosensors and Bioelectronics, 2014, 61: 541-546.

[122] Guo X, Tong L. Supported microfiber loops for optical sensing[J]. Optics Express, 2008, 16(19): 14429-14434.

    Guo X, Tong L. Supported microfiber loops for optical sensing[J]. Optics Express, 2008, 16(19): 14429-14434.

[123] Xu Z, Sun Q, Li B, et al. Highly sensitive refractive index sensor based on cascaded microfiber knots with Vernier effect[J]. Optics Express, 2015, 23(5): 6662-6672.

    Xu Z, Sun Q, Li B, et al. Highly sensitive refractive index sensor based on cascaded microfiber knots with Vernier effect[J]. Optics Express, 2015, 23(5): 6662-6672.

[124] Liao C, Wang D, Wang Y. Microfiber in-line Mach-Zehnder interferometer for strain sensing[J]. Optics Letters, 2013, 38(5): 757-759.

    Liao C, Wang D, Wang Y. Microfiber in-line Mach-Zehnder interferometer for strain sensing[J]. Optics Letters, 2013, 38(5): 757-759.

[125] Tan Y, Sun L P, Jin L, et al. Microfiber Mach-Zehnder interferometer based on long period grating for sensing applications[J]. Optics Express, 2013, 21(1): 154-164.

    Tan Y, Sun L P, Jin L, et al. Microfiber Mach-Zehnder interferometer based on long period grating for sensing applications[J]. Optics Express, 2013, 21(1): 154-164.

[126] Zhang L, Wang P, Xiao Y, et al. Ultra-sensitive microfibre absorption detection in a microfluidic chip[J]. Lab on a Chip, 2011, 11(21): 3720-3724.

    Zhang L, Wang P, Xiao Y, et al. Ultra-sensitive microfibre absorption detection in a microfluidic chip[J]. Lab on a Chip, 2011, 11(21): 3720-3724.

[127] Zhang L, Li Z, Mu J, et al. Femtoliter-scale optical nanofiber sensors[J]. Optics Express, 2015, 23(22): 28408-28415.

    Zhang L, Li Z, Mu J, et al. Femtoliter-scale optical nanofiber sensors[J]. Optics Express, 2015, 23(22): 28408-28415.

[128] Gu F, Zhang L, Yin X, et al. Polymer single-nanowire optical sensors[J]. Nano Letters, 2008, 8(9): 2757-2761.

    Gu F, Zhang L, Yin X, et al. Polymer single-nanowire optical sensors[J]. Nano Letters, 2008, 8(9): 2757-2761.

[129] Zhu H, Wang Y, Li B. Tunable refractive index sensor with ultracompact structure twisted by poly (trimethylene terephthalate) nanowires[J]. ACS Nano, 2009, 3(10): 3110-3114.

    Zhu H, Wang Y, Li B. Tunable refractive index sensor with ultracompact structure twisted by poly (trimethylene terephthalate) nanowires[J]. ACS Nano, 2009, 3(10): 3110-3114.

[130] Meng C, Xiao Y, Wang P, et al. Quantum-dot-doped polymer nanofibers for optical sensing[J]. Advanced Materials, 2011, 23(33): 3770-3774.

    Meng C, Xiao Y, Wang P, et al. Quantum-dot-doped polymer nanofibers for optical sensing[J]. Advanced Materials, 2011, 23(33): 3770-3774.

[131] Wang P, Wang Y, Yang Z, et al. Single-band 2-nm-line-width plasmon resonance in a strongly coupled Au nanorod[J]. Nano Letters, 2015, 15(11): 7581-7586.

    Wang P, Wang Y, Yang Z, et al. Single-band 2-nm-line-width plasmon resonance in a strongly coupled Au nanorod[J]. Nano Letters, 2015, 15(11): 7581-7586.

[132] Huang Y, Yu B, Guo T, et al. Ultrasensitive and in situ DNA detection in various pH environments based on a microfiber with a graphene oxide linking layer[J]. RSC Advances, 2017, 7(22): 13177-13183.

    Huang Y, Yu B, Guo T, et al. Ultrasensitive and in situ DNA detection in various pH environments based on a microfiber with a graphene oxide linking layer[J]. RSC Advances, 2017, 7(22): 13177-13183.

[133] Jin W, Cao Y, Yang F, et al. Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range[J]. Nature Communications, 2015, 6: 6767.

    Jin W, Cao Y, Yang F, et al. Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range[J]. Nature Communications, 2015, 6: 6767.

[134] Yang F, Tan Y, Jin W, et al. Hollow-core fiber Fabry-Perot photothermal gas sensor[J]. Optics Letters, 2016, 41(13): 3025-3028.

    Yang F, Tan Y, Jin W, et al. Hollow-core fiber Fabry-Perot photothermal gas sensor[J]. Optics Letters, 2016, 41(13): 3025-3028.

[135] Cao Y, Jin W, Ho H L, et al. Miniature fiber-tip photoacoustic spectrometer for trace gas detection[J]. Optics Letters, 2013, 38(4): 434-436.

    Cao Y, Jin W, Ho H L, et al. Miniature fiber-tip photoacoustic spectrometer for trace gas detection[J]. Optics Letters, 2013, 38(4): 434-436.

[136] Wang Q, Wang J, Li L, et al. An all-optical photoacoustic spectrometer for trace gas detection[J]. Sensors and Actuators B: Chemical, 2011, 153(1): 214-218.

    Wang Q, Wang J, Li L, et al. An all-optical photoacoustic spectrometer for trace gas detection[J]. Sensors and Actuators B: Chemical, 2011, 153(1): 214-218.

[137] Tan Y, Zhang C, Jin W, et al. Optical fiber photoacoustic gas sensor with graphene nano-mechanical resonator as the acoustic detector[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23(2): 1-11.

    Tan Y, Zhang C, Jin W, et al. Optical fiber photoacoustic gas sensor with graphene nano-mechanical resonator as the acoustic detector[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23(2): 1-11.

[138] Mao X, Zhou X, Gong Z, et al. An all-optical photoacoustic spectrometer for multi-gas analysis[J]. Sensors and Actuators B: Chemical, 2016, 232: 251-256.

    Mao X, Zhou X, Gong Z, et al. An all-optical photoacoustic spectrometer for multi-gas analysis[J]. Sensors and Actuators B: Chemical, 2016, 232: 251-256.

[139] Yang M, Dai J. Fiber optic hydrogen sensors: A review[J]. Photonic Sensors, 2014, 4(4): 300-324.

    Yang M, Dai J. Fiber optic hydrogen sensors: A review[J]. Photonic Sensors, 2014, 4(4): 300-324.

[140] Yuan L, Yang J, Liu Z, et al. In-fiber integrated Michelson interferometer[J]. Optics Letters, 2006, 31(18): 2692-2694.

    Yuan L, Yang J, Liu Z, et al. In-fiber integrated Michelson interferometer[J]. Optics Letters, 2006, 31(18): 2692-2694.

[141] Peng F, Yang J, Li X, et al. In-fiber integrated accelerometer[J]. Optics Letters, 2011, 36(11): 2056-2058.

    Peng F, Yang J, Li X, et al. In-fiber integrated accelerometer[J]. Optics Letters, 2011, 36(11): 2056-2058.

[142] Zhou A, Zhang Y, Li G, et al. Optical refractometer based on an asymmetrical twin-core fiber Michelson interferometer[J]. Optics Letters, 2011, 36(16): 3221-3223.

    Zhou A, Zhang Y, Li G, et al. Optical refractometer based on an asymmetrical twin-core fiber Michelson interferometer[J]. Optics Letters, 2011, 36(16): 3221-3223.

[143] Yuan L, Yang J, Liu Z. A compact fiber-optic flow velocity sensor based on a twin-core fiber Michelson interferometer[J]. IEEE Sensors Journal, 2008, 8(7): 1114-1117.

    Yuan L, Yang J, Liu Z. A compact fiber-optic flow velocity sensor based on a twin-core fiber Michelson interferometer[J]. IEEE Sensors Journal, 2008, 8(7): 1114-1117.

[144] HitzB. All-fiber Michelson interferometer proposed as unique sensor[OL]. [2017-11-22].https:∥www.photonics.com/Article.aspx?AID=27246.

    HitzB. All-fiber Michelson interferometer proposed as unique sensor[OL]. [2017-11-22].https:∥www.photonics.com/Article.aspx?AID=27246.

[145] Yang X, Guo X, Li S, et al. Lab-on-fiber electrophoretic trace mixture separating and detecting an optofluidic device based on a microstructured optical fiber[J]. Optics Letters, 2016, 41(8): 1873-1876.

    Yang X, Guo X, Li S, et al. Lab-on-fiber electrophoretic trace mixture separating and detecting an optofluidic device based on a microstructured optical fiber[J]. Optics Letters, 2016, 41(8): 1873-1876.

[146] Yang X, Zheng Y, Luo S, et al. Microfluidic in-fiber oxygen sensor derivates from a capillary optical fiber with a ring-shaped waveguide[J]. Sensors and Actuators B: Chemical, 2013, 182: 571-575.

    Yang X, Zheng Y, Luo S, et al. Microfluidic in-fiber oxygen sensor derivates from a capillary optical fiber with a ring-shaped waveguide[J]. Sensors and Actuators B: Chemical, 2013, 182: 571-575.

[147] Yuan T, Zhong X, Guan C, et al. Long period fiber grating in two-core hollow eccentric fiber[J]. Optics Express, 2015, 23(26): 33378-33385.

    Yuan T, Zhong X, Guan C, et al. Long period fiber grating in two-core hollow eccentric fiber[J]. Optics Express, 2015, 23(26): 33378-33385.

[148] Yuan L, Wang X. Four-beam single fiber optic interferometer and its sensing characteristics[J]. Sensors and Actuators A: Physical, 2007, 138(1): 9-15.

    Yuan L, Wang X. Four-beam single fiber optic interferometer and its sensing characteristics[J]. Sensors and Actuators A: Physical, 2007, 138(1): 9-15.

[149] Yuan L. Recent progress of in-fiber integrated interferometers[J]. Photonic Sensors, 2011, 1(1): 1-5.

    Yuan L. Recent progress of in-fiber integrated interferometers[J]. Photonic Sensors, 2011, 1(1): 1-5.

[150] Yuan L, Yang J, Guan C, et al. Three-core fiber-based shape-sensing application[J]. Optics Letters, 2008, 33(6): 578-580.

    Yuan L, Yang J, Guan C, et al. Three-core fiber-based shape-sensing application[J]. Optics Letters, 2008, 33(6): 578-580.

[151] Guan B O, Jin L, Zhang Y, et al. Polarimetric heterodyning fiber grating laser sensors[J]. Journal of Lightwave Technology, 2012, 30(8): 1097-1112.

    Guan B O, Jin L, Zhang Y, et al. Polarimetric heterodyning fiber grating laser sensors[J]. Journal of Lightwave Technology, 2012, 30(8): 1097-1112.

[152] Jin L, Liang Y, Li M P, et al. A 16-element multiplexed heterodyning fiber grating laser sensor array[J]. Journal of Lightwave Technology, 2014, 32(22): 3808-3813.

    Jin L, Liang Y, Li M P, et al. A 16-element multiplexed heterodyning fiber grating laser sensor array[J]. Journal of Lightwave Technology, 2014, 32(22): 3808-3813.

[153] Bai X, Liang Y, Sun H, et al. Sensitivity characteristics of broadband fiber-laser-based ultrasound sensors for photoacoustic microscopy[J]. Optics Express, 2017, 25(15): 17616-17626.

    Bai X, Liang Y, Sun H, et al. Sensitivity characteristics of broadband fiber-laser-based ultrasound sensors for photoacoustic microscopy[J]. Optics Express, 2017, 25(15): 17616-17626.

[154] Liu D, Liang Y, Jin L, et al. Highly sensitive fiber laser ultrasound hydrophones for sensing and imaging applications[J]. Optics Letters, 2016, 41(19): 4530-4533.

    Liu D, Liang Y, Jin L, et al. Highly sensitive fiber laser ultrasound hydrophones for sensing and imaging applications[J]. Optics Letters, 2016, 41(19): 4530-4533.

[155] Liang Y, Jin L, Wang L, et al. Fiber-laser-based ultrasound sensor for photoacoustic imaging[J]. Scientific Reports, 2017, 7: 40849.

    Liang Y, Jin L, Wang L, et al. Fiber-laser-based ultrasound sensor for photoacoustic imaging[J]. Scientific Reports, 2017, 7: 40849.

[156] Lu Y C, Huang W P, Jian S S. Influence of mode loss on the feasibility of grating-assisted optical fiber surface plasmon resonance refractive index sensors[J]. Journal of Lightwave Technology, 2009, 27(21): 4804-4808.

    Lu Y C, Huang W P, Jian S S. Influence of mode loss on the feasibility of grating-assisted optical fiber surface plasmon resonance refractive index sensors[J]. Journal of Lightwave Technology, 2009, 27(21): 4804-4808.

[157] Zhao Y, Deng Z Q, Wang Q. Fiber optic SPR sensor for liquid concentration measurement[J]. Sensors and Actuators B: Chemical, 2014, 192: 229-233.

    Zhao Y, Deng Z Q, Wang Q. Fiber optic SPR sensor for liquid concentration measurement[J]. Sensors and Actuators B: Chemical, 2014, 192: 229-233.

[158] Zhao J, Cao S, Liao C, et al. Surface plasmon resonance refractive sensor based on silver-coated side-polished fiber[J]. Sensors and Actuators B: Chemical, 2016, 230: 206-211.

    Zhao J, Cao S, Liao C, et al. Surface plasmon resonance refractive sensor based on silver-coated side-polished fiber[J]. Sensors and Actuators B: Chemical, 2016, 230: 206-211.

[159] Tan Z, Hao X, Shao Y, et al. Phase modulation and structural effects in a D-shaped all-solid photonic crystal fiber surface plasmon resonance sensor[J]. Optics Express, 2014, 22(12): 15049-15063.

    Tan Z, Hao X, Shao Y, et al. Phase modulation and structural effects in a D-shaped all-solid photonic crystal fiber surface plasmon resonance sensor[J]. Optics Express, 2014, 22(12): 15049-15063.

[160] Wang T, Liu T, Liu K, et al. An EMD-based filtering algorithm for the fiber-optic SPR sensor[J]. IEEE Photonics Journal, 2016, 8(3): 1-8.

    Wang T, Liu T, Liu K, et al. An EMD-based filtering algorithm for the fiber-optic SPR sensor[J]. IEEE Photonics Journal, 2016, 8(3): 1-8.

[161] Caucheteur C, Guo T, Liu F, et al. Ultrasensitive plasmonic sensing in air using optical fibre spectral combs[J]. Nature Communications, 2016, 7: 13371.

    Caucheteur C, Guo T, Liu F, et al. Ultrasensitive plasmonic sensing in air using optical fibre spectral combs[J]. Nature Communications, 2016, 7: 13371.

[162] Guo T, Liu F, Liang X, et al. Highly sensitive detection of urinary protein variations using tilted fiber grating sensors with plasmonic nanocoatings[J]. Biosensors and Bioelectronics, 2016, 78: 221-228.

    Guo T, Liu F, Liang X, et al. Highly sensitive detection of urinary protein variations using tilted fiber grating sensors with plasmonic nanocoatings[J]. Biosensors and Bioelectronics, 2016, 78: 221-228.

[163] Liu Z, Wei Y, Zhang Y, et al. Twin-core fiber SPR sensor[J]. Optics Letters, 2015, 40(12): 2826-2829.

    Liu Z, Wei Y, Zhang Y, et al. Twin-core fiber SPR sensor[J]. Optics Letters, 2015, 40(12): 2826-2829.

[164] Liu Z, Wei Y, Zhang Y, et al. Distributed fiber surface plasmon resonance sensor based on the incident angle adjusting method[J]. Optics Letters, 2015, 40(19): 4452-4455.

    Liu Z, Wei Y, Zhang Y, et al. Distributed fiber surface plasmon resonance sensor based on the incident angle adjusting method[J]. Optics Letters, 2015, 40(19): 4452-4455.

[165] Liang Y, Peng W, Li L, et al. Tunable plasmonic resonances based on elliptical annular aperture arrays on conducting substrates for advanced biosensing[J]. Optics Letters, 2015, 40(16): 3909-3912.

    Liang Y, Peng W, Li L, et al. Tunable plasmonic resonances based on elliptical annular aperture arrays on conducting substrates for advanced biosensing[J]. Optics Letters, 2015, 40(16): 3909-3912.

[166] Liang Y, Lu M, Chu S, et al. Tunable plasmonic resonances in the hexagonal nanoarrays of annular aperture for biosensing[J]. Plasmonics, 2016, 11(1): 205-212.

    Liang Y, Lu M, Chu S, et al. Tunable plasmonic resonances in the hexagonal nanoarrays of annular aperture for biosensing[J]. Plasmonics, 2016, 11(1): 205-212.

[167] Chen S, Liu Y, Liu Q, et al. Self-reference surface plasmon resonance biosensor based on multiple-beam interference[J]. IEEE Sensors Journal, 2016, 16(21): 7568-7571.

    Chen S, Liu Y, Liu Q, et al. Self-reference surface plasmon resonance biosensor based on multiple-beam interference[J]. IEEE Sensors Journal, 2016, 16(21): 7568-7571.

[168] Zhang Y, Wang F, Liu Z, et al. Fiber-optic anemometer based on single-walled carbon nanotube coated tilted fiber Bragg grating[J]. Optics express, 2017, 25(20): 24521-24530.

    Zhang Y, Wang F, Liu Z, et al. Fiber-optic anemometer based on single-walled carbon nanotube coated tilted fiber Bragg grating[J]. Optics express, 2017, 25(20): 24521-24530.

[169] Lu M, Zhang X, Liang Y, et al. Liquid crystal filled surface plasmon resonance thermometer[J]. Optics Express, 2016, 24(10): 10904-10911.

    Lu M, Zhang X, Liang Y, et al. Liquid crystal filled surface plasmon resonance thermometer[J]. Optics Express, 2016, 24(10): 10904-10911.

[170] Lu M, Liang Y, Qian S, et al. Optimization of surface plasmon resonance biosensor with Ag/Au multilayer structure and fiber-optic miniaturization[J]. Plasmonics, 2017, 12(3): 663-673.

    Lu M, Liang Y, Qian S, et al. Optimization of surface plasmon resonance biosensor with Ag/Au multilayer structure and fiber-optic miniaturization[J]. Plasmonics, 2017, 12(3): 663-673.

[171] 王斌, 荆振国, 彭伟, 等. 相位表面等离子体共振传感系统中的相差信号处理技术[J]. 中国激光, 2015, 42(6): 0608009.

    王斌, 荆振国, 彭伟, 等. 相位表面等离子体共振传感系统中的相差信号处理技术[J]. 中国激光, 2015, 42(6): 0608009.

    Wang B, Jing Z G, Peng W, et al. Phase difference signal processing technology in surface plasmon resonance sensing system[J]. Chinese Journal of Lasers, 2015, 42(6): 0608009.

    Wang B, Jing Z G, Peng W, et al. Phase difference signal processing technology in surface plasmon resonance sensing system[J]. Chinese Journal of Lasers, 2015, 42(6): 0608009.

[172] Qian S, Liang Y, Ma J, et al. Boronic acid modified fiber optic SPR sensor and its application in saccharide detection[J]. Sensors and Actuators B: Chemical, 2015, 220: 1217-1223.

    Qian S, Liang Y, Ma J, et al. Boronic acid modified fiber optic SPR sensor and its application in saccharide detection[J]. Sensors and Actuators B: Chemical, 2015, 220: 1217-1223.

[173] Peng W, Liu Y, Fang P, et al. Compact surface plasmon resonance imaging sensing system based on general optoelectronic components[J]. Optics Express, 2014, 22(5): 6174-6185.

    Peng W, Liu Y, Fang P, et al. Compact surface plasmon resonance imaging sensing system based on general optoelectronic components[J]. Optics Express, 2014, 22(5): 6174-6185.

[174] Liu Y, Liu Q, Chen S, et al. Surface plasmon resonance biosensor based on smart phone platforms[J]. Scientific Reports, 2015, 5: 12864.

    Liu Y, Liu Q, Chen S, et al. Surface plasmon resonance biosensor based on smart phone platforms[J]. Scientific Reports, 2015, 5: 12864.

[175] Jiang Y, Tang C J, Guo G R. Note: Phase compensation in the fiber optical quadrature passive demodulation scheme[J]. Review of Scientific Instruments, 2010, 81(4): 046108.

    Jiang Y, Tang C J, Guo G R. Note: Phase compensation in the fiber optical quadrature passive demodulation scheme[J]. Review of Scientific Instruments, 2010, 81(4): 046108.

[176] Jiang Y, Ding W H, Liang P J, et al. Phase-shifted white-light interferometry for the absolute measurement of fiber optic Mach-Zehnder interferometers[J]. Journal of Lightwave Technology, 2010, 28(22): 3294-3299.

    Jiang Y, Ding W H, Liang P J, et al. Phase-shifted white-light interferometry for the absolute measurement of fiber optic Mach-Zehnder interferometers[J]. Journal of Lightwave Technology, 2010, 28(22): 3294-3299.

[177] Jiang Y. Fourier transform white-light interferometry for the measurement of fiber-optic extrinsic Fabry-Perot interferometric sensors[J]. IEEE Photonics Technology Letters, 2008, 20(2): 75-77.

    Jiang Y. Fourier transform white-light interferometry for the measurement of fiber-optic extrinsic Fabry-Perot interferometric sensors[J]. IEEE Photonics Technology Letters, 2008, 20(2): 75-77.

[178] Jiang Y, Tang C J. Fourier transform white-light interferometry based spatial frequency-division multiplexing of extrinsic Fabry-Pérot interferometric sensors[J]. Review of Scientific Instruments, 2008, 79(10): 106105.

    Jiang Y, Tang C J. Fourier transform white-light interferometry based spatial frequency-division multiplexing of extrinsic Fabry-Pérot interferometric sensors[J]. Review of Scientific Instruments, 2008, 79(10): 106105.

[179] Wang Q, Yu Q X. Continuously tunable S and C+L bands ultra wideband erbium-doped fiber ring laser[J]. Laser Physics Letters, 2009, 6(8): 607-610.

    Wang Q, Yu Q X. Continuously tunable S and C+L bands ultra wideband erbium-doped fiber ring laser[J]. Laser Physics Letters, 2009, 6(8): 607-610.

[180] Zhou X L, Yu Q X. Wide-range displacement sensor based on fiber-optic Fabry-Perot interferometer for subnanometer measurement[J]. IEEE Sensors Journal, 2011, 11(7): 1602-1606.

    Zhou X L, Yu Q X. Wide-range displacement sensor based on fiber-optic Fabry-Perot interferometer for subnanometer measurement[J]. IEEE Sensors Journal, 2011, 11(7): 1602-1606.

[181] Wang Q, Zhang L, Sun C, et al. Multiplexed fiber-optic pressure and temperature sensor system for down-hole measurement[J]. IEEE Sensors Journal, 2008, 8(11): 1879-1883.

    Wang Q, Zhang L, Sun C, et al. Multiplexed fiber-optic pressure and temperature sensor system for down-hole measurement[J]. IEEE Sensors Journal, 2008, 8(11): 1879-1883.

[182] Zhou X L, Yu Q X, Peng W. Simultaneous measurement of down-hole pressure and distributed temperature with single fiber[J]. Measurement Science and Technology, 2012, 23(8): 085102.

    Zhou X L, Yu Q X, Peng W. Simultaneous measurement of down-hole pressure and distributed temperature with single fiber[J]. Measurement Science and Technology, 2012, 23(8): 085102.

[183] Rao Y J, Deng M, Duan D W, et al. Micro Fabry-Perot interferometers in silica fibers machined by femtosecond laser[J]. Optics Express, 2007, 15(21): 14123-14128.

    Rao Y J, Deng M, Duan D W, et al. Micro Fabry-Perot interferometers in silica fibers machined by femtosecond laser[J]. Optics Express, 2007, 15(21): 14123-14128.

[184] Ran Z L, Rao Y J, Liao X. Self-enclosed all-fiber in-line etalon strain sensor micromachined by 157-nm laser pulses[J]. Journal of Lightwave Technology, 2009, 27(15): 3143-3149.

    Ran Z L, Rao Y J, Liao X. Self-enclosed all-fiber in-line etalon strain sensor micromachined by 157-nm laser pulses[J]. Journal of Lightwave Technology, 2009, 27(15): 3143-3149.

[185] Ding W H, Jiang Y. Miniature photonic crystal fiber sensor for high-temperature measurement[J]. IEEE Sensors Journal, 2013, 14(3): 786-789.

    Ding W H, Jiang Y. Miniature photonic crystal fiber sensor for high-temperature measurement[J]. IEEE Sensors Journal, 2013, 14(3): 786-789.

[186] Liu S, Wang Y P, Liao C R, et al. High-sensitivity strain sensor based on in-fiber improved Fabry-Perot interferometer[J]. Optics Letters, 2014, 39(7): 2121-2124.

    Liu S, Wang Y P, Liao C R, et al. High-sensitivity strain sensor based on in-fiber improved Fabry-Perot interferometer[J]. Optics Letters, 2014, 39(7): 2121-2124.

[187] Liu S, Yang K M, Wang Y P, et al. High-sensitivity strain sensor based on in-fiber rectangular air bubble[J]. Scientific Reports, 2015, 5: 7624.

    Liu S, Yang K M, Wang Y P, et al. High-sensitivity strain sensor based on in-fiber rectangular air bubble[J]. Scientific Reports, 2015, 5: 7624.

[188] Liao C R, Liu S, Xu L, et al. Sub-micron silica diaphragm based fiber-tip Fabry-Perot interferometer for pressure measurement[J]. Optics Letters, 2014, 39(10): 2827-2830.

    Liao C R, Liu S, Xu L, et al. Sub-micron silica diaphragm based fiber-tip Fabry-Perot interferometer for pressure measurement[J]. Optics Letters, 2014, 39(10): 2827-2830.

廖延彪, 苑立波, 田芊. 中国光纤传感40年[J]. 光学学报, 2018, 38(3): 0328001. Liao Yanbiao, Yuan Libo, Tian Qian. The 40 Years of Optical Fiber Sensors in China[J]. Acta Optica Sinica, 2018, 38(3): 0328001.

本文已被 30 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!