Journal of Innovative Optical Health Sciences, 2019, 12 (6): , Published Online: --  

Super-resolution microscopy based on parallel detection

Author Affiliations
1 State Key Laboratory of Modern Optical Instrumentation College of Optical Science and Engineering, Zhejiang University Hangzhou, Zhejiang 310027, P. R. China
2 Ningbo Research Institute, Zhejiang University Ningbo 315100, P. R. China
3 Collaborative Innovation Center of Extreme Optics, Shanxi University Taiyuan, Shanxi 030006, P. R. China
4 College of Electronics and Information Engineering Shanghai University of Electric Power, Shanghai 200090, P. R. China
5 Key Laboratory of Optoelectronic Science and Technology for Medicine Ministry of Education and Fujian Provincial Key Laboratory for Photonics Technology Fujian Normal University, Fuzhou 350007, P. R. China
Copy Citation Text

Zhimin Zhang, Shaocong Liu, Liang Xu, Yubing Han, Cuifang Kuang, Yong Liu, Xiang Hao, Hongqin Yang, Xu Liu. Super-resolution microscopy based on parallel detection[J]. Journal of Innovative Optical Health Sciences, 2019, 12(6): .

References

[1] C. J. R. Sheppard, "Super-resolution in confocal imaging," Optik 80(2), 53–54 (1988).

[2] C. B. Müller, E. J€org, "Image scanning microscopy," Phys. Rev. Lett. 104(19), 198101 (2010).

[3] C. J. R. Sheppard, S. B. Mehta, R. Heintzmann, "Superresolution by image scanning microscopy using pixel reassignment," Opt. Lett. 38(15), 2889– 2892 (2013).

[4] E. Abbe, "Beitr?ge zur Theorie des Mikro skops und der mikroskopischen Wahrnehmung," Archiv f€ur mikroskopische Anatomie 9(1), 413–418 (1873).

[5] C. Hockin, "On the estimation of aperture in the microscope," J. R. Microscop. Soc. 4(3), 337–347 (1884).

[6] S. W. Hell, W. Jan, "Breaking the diffraction resolution limit by stimulated emission: Stimulatedemission- depletion fluorescence microscopy," Opt. Lett. 19(11), 780–782 (1994).

[7] W. E. Moerner, L. Kador, "Optical detection and spectroscopy of single molecules in a solid," Phys. Rev. Lett. 62(21), 2535 (1989).

[8] E. Betzig, "Proposed method for molecular optical imaging," Opt. Lett. 20(3) 237–239 (1995).

[9] S. T. Hess, T. P. K. Girirajan, M. D. Mason, "Ultrahigh resolution imaging by fluorescence photoactivation localization microscopy," Biophys. J. 91(11), 4258–4272 (2006).

[10] X. Wang et al., "Super-resolution microscopy and its applications in neuroscience," J. Innov. Opt. Health Sci. 10(5), 1730001 (2017).

[11] C. J. R. Sheppard, A. Choudhury, "Image formation in the scanning microscope," Opti. Acta. Int. J. Optics 24(10), 1051–1073 (1977).

[12] G. Cox, C. J. R. Sheppard, "Practical limits of resolution in confocal and non-linear microscopy," Microsc. Res. Tech. 63(1), 18–22 (2004).

[13] M. Castello et al., "A robust and versatile platform for image scanning microscopy enabling super-resolution FLIM," Nat. Methods 16(2), 175 (2019).

[14] F. Str€ohl, C. F. Kaminski, "Frontiers in structured illumination microscopy," Optica 3(6), 667–677 (2016).

[15] R. Heintzmann, C. G. Cremer, "Laterally modulated excitation microscopy: Improvement of resolution by using a diffraction grating," Opt. Biopsies Microsc. Techn. III 3568 (1999), International Society for Optics and Photonics.

[16] M. G. L. Gustafsson, "Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy," J. Microsc. 198(2), 82–87 (2000).

[17] J.-C. Yoo, T. H. Han, "Fast normalized crosscorrelation, Circuits Syst. Signal Process. 28(6), 819 (2009).

[18] Y. He et al., "Rapid bacteria identification using structured illumination microscopy and machine learning," J. Innov. Opt. Health Sci. 11(1), 1850007 (2018).

[19] X. Yang et al., "Fringe optimization for structured illumination super-resolution microscope with digital micromirror device," J. Innov. Opt. Health Sci. 12(3), 1950014 (2019).

[20] C. Kuang et al., "Breaking the diffraction barrier using fluorescence emission difference microscopy," Sci. Rep. 3, 1441 (2013).

[21] Y. Ma et al., "Virtual fluorescence emission difference microscopy based on photon reassignment," Optics Lett. 40(20), 4627–4630 (2015).

[22] B. Ge et al., "Three-dimensional resolution and contrast-enhanced confocal microscopy with array detection," Optics Lett. 41(9), 2013–2016 (2016).

[23] S. Liu et al., "Saturated virtual fluorescence emission difference microscopy based on detector array," Opt. Commun. 395, 45–50 (2017).

[24] A. G. York et al., "Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy," Nat. Methods 9(7), 749 (2012).

[25] M. G. L. Gustafsson et al., "Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination," Biophys. J. 94(12), 4957–4970 (2008).

[26] L. Schermelleh et al., "Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy," Science 320(5881), 1332– 1336 (2008).

Zhimin Zhang, Shaocong Liu, Liang Xu, Yubing Han, Cuifang Kuang, Yong Liu, Xiang Hao, Hongqin Yang, Xu Liu. Super-resolution microscopy based on parallel detection[J]. Journal of Innovative Optical Health Sciences, 2019, 12(6): .

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!