Photonic Sensors, 2020, 10 (2): 97, Published Online: Dec. 23, 2020  

Polydopamine-Assisted Fabrication of Stable Silver Nanoparticles on Optical Fiber for Enhanced Plasmonic Sensing

Author Affiliations
1 State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
2 Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
Copy Citation Text

Yiwen TANG, Hui YUAN, Jiangping CHEN, Qiguo XING, Rongxin SU, Wei QI, Zhimin HE. Polydopamine-Assisted Fabrication of Stable Silver Nanoparticles on Optical Fiber for Enhanced Plasmonic Sensing[J]. Photonic Sensors, 2020, 10(2): 97.

References

[1] E. C. Peláez, M. C. Estevez, A. Portela, J. P. Salvador, M. P. Marco, and L. M. Lechuga, “Nanoplasmonic biosensor device for the monitoring of acenocoumarol therapeutic drug in plasma,” Biosensors and Bioelectronics, 2018, 119: 149–155.

[2] Y. Wang, S. Meng, Y. Liang, L. Li, and W. Peng, “Fiber-optic surface plasmon resonance sensor with multi-alternating metal layers for biological measurement,” Photonic Sensors, 2013, 3(3): 202–207.

[3] M. T. Alula, L. Karamchand, N. R. Hendricks, and J. M. Blackburn, “Citrate-capped silver nanoparticles as a probe for sensitive and selective colorimetric and spectrophotometric sensing of creatinine in human urine,” Analytica Chimica Acta, 2018, 1007: 40–49.

[4] Q. Jiang, M. Xue, P. Liang, C. Zhang, J. Lin, and J. Ouyang, “Principle and experiment of protein detection based on optical fiber sensing,” Photonic Sensors, 2017, 7(4): 317–324.

[5] M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, “Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers,” Journal of the American Chemical Society, 2001, 123(7): 1471–1482.

[6] C. L. Haynes, A. J. Haes, A. D. McFarland, and R. P. Van Duyne, “Nanoparticles with tunable localized surface plasmon resonances,” Radiative Decay Engineering, Springer, Boston, MA, 2005, pp. 47–99.

[7] J. Zhao, X. Zhang, C. R. Yonzon, A. J. Haes, and R. P. Van Duyne, “Localized surface plasmon resonance biosensors,” Nanomedicine, 2006, 1(2): 219–228.

[8] K. Jia, M. Y. Khaywah, Y. Li, J. L. Bijeon, P. M. Adam, R. Déturche, et al., “Strong improvements of localized surface plasmon resonance sensitivity by using Au/Ag bimetallic nanostructures modified with polydopamine films,” ACS Applied Materials & Interfaces, 2014, 6(1): 219–227.

[9] M. Consales, M. Pisco, and A. Cusano, “Lab-on-fiber technology: a new avenue for optical nanosensors,” Photonic Sensors, 2012, 2(4): 289–314.

[10] B. Sciacca and T. M. Monro, “Dip biosensor based on localized surface plasmon resonance at the tip of an optical fiber,” Langmuir, 2014, 30(3): 946–954.

[11] T. J. Lin and M. F. Chung, “Detection of cadmium by a fiber-optic biosensor based on localized surface plasmon resonance,” Biosensors and Bioelectronics, 2009, 24(5): 1213–1218.

[12] Y. Q. Chen and C. J. Lu, “Surface modification on silver nanoparticles for enhancing vapor selectivity of localized surface plasmon resonance sensors,” Sensors and Actuators B: Chemical, 2009, 135(2): 492–498.

[13] K. J. Chen and C. J. Lu, “A vapor sensor array using multiple localized surface plasmon resonance bands in a single UV–vis spectrum,” Talanta, 2010, 81(4): 1670–1675.

[14] J. Cao, M. H. Tu, T. Sun, and K. T. V. Grattan, “Wavelength-based localized surface plasmon resonance optical fiber biosensor,” Sensors and Actuators B: Chemical, 2013, 181: 611–619.

[15] Y. Shao, S. Xu, X. Zheng, Y. Wang, and W. Xu, “Optical fiber LSPR biosensor prepared by gold nanoparticle assembly on polyelectrolyte multilayer,” Sensors, 2010, 10(4): 3585–3596.

[16] S. Shi, L. Wang, R. Su, B. Liu, R. Huang, W. Qi, and Z. He, “A polydopamine-modified optical fiber SPR biosensor using electroless-plated gold films for immunoassays,” Biosensors & Bioelectronics, 2015, 74: 454–460.

[17] Y. Chen and H. Ming, “Review of surface plasmon resonance and localized surface plasmon resonance sensor,” Photonic Sensors, 2012, 2(1): 37–49.

[18] H. Lee, S. M. Dellatore, W. M. Miller, and P. B. Messersmith, “Mussel-inspired surface chemistry for multifunctional coatings,” Science, 2007, 318(5849): 426–430.

[19] S. Hong, Y. S. Na, S. Choi, I. T. Song, W. Y. Kim, and H. Lee, “Non-covalent self-assembly and covalent polymerization co-contribute to polydopamine formation,” Advanced Functional Materials, 2012, 22(22): 4711–4717.

[20] N. F. D. Vecchia, R. Avolio, M. Alfè, M. E. Errico, A. Napolitano, and M. D'Ischia, “Building-block diversity in polydopamine underpins a multifunctional eumelanin-type platform tunable through a quinone control point,” Advanced Functional Materials, 2013, 23(10): 1331–1340.

[21] R. A. Zangmeister, T. A. Morris, and M. J. Tarlov, “Characterization of polydopamine thin films deposited at short times by autoxidation of dopamine,” Langmuir, 2013, 29(27): 8619–8628.

[22] S. Shi, L. B. Wang, A. K. Wang, R. L. Huang, L. Ding, R. X. Su, et al., “Bioinspired fabrication of optical fiber SPR sensors for immunoassays using polydopamine-accelerated electroless plating,” Journal of Materials Chemistry C, 2016, 4(32): 7554–7562.

[23] C. Gao, Y. Hu, M. Wang, M. Chi, and Y. Yin, “Fully alloyed Ag/Au nanospheres: combining the plasmonic property of ag with the stability of Au,” Journal of the American Chemical Society, 2014, 136(20): 7474–7479.

[24] A. Taflove and S. C. Hagness, Computational electrodynamics: the finite-difference time-domain method. Boston, United States: Artech House, 2005.

[25] E. D. Palik and G. Ghosh, Handbook of optical constants of solids. San Diego, United States: Academic Press, 1998.

[26] T. Liu, W. Wang, F. Liu, and S. Wang, “Photochemical deposition fabricated highly sensitive localized surface plasmon resonance based optical fiber sensor,” Optics Communications, 2018, 427: 301–305.

[27] J. G. Ortega-Mendoza, A. Padilla-Vivanco, C. Toxqui-Quitl, N. P. Zaca-Mor-, N. D. Villegas-Hern-, and V. F. Ch-, “Optical fiber sensor based on localized surface plasmon resonance using silver nanoparticles photodeposited on the optical fiber end,” Sensors, 2014, 14(10): 18701–18710.

[28] N. A. Cinel, B. Serkan, and Z. Ekmel, “Electron beam lithography designed silver nano-disks used as label free nano-biosensors based on localized surface plasmon resonance,” Optics Express, 2012, 20(3): 2587.

[29] J. P. Chen, S. Shi, R. X. Su, W. Qi, R. L. Huang, M. F. Wang, et al., “Optimization and application of reflective lspr optical fiber biosensors based on silver nanoparticles,” Sensors, 2015, 15(6): 12205–12217.

[30] O. Tabasi and C. Falamaki, “Recent advancements in the methodologies applied for the sensitivity enhancement of surface plasmon resonance sensors,” Analytical Methods, 2018, 10(32): 3906–3925.

Yiwen TANG, Hui YUAN, Jiangping CHEN, Qiguo XING, Rongxin SU, Wei QI, Zhimin HE. Polydopamine-Assisted Fabrication of Stable Silver Nanoparticles on Optical Fiber for Enhanced Plasmonic Sensing[J]. Photonic Sensors, 2020, 10(2): 97.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!