Photonics Research, 2019, 7 (10): 10001175, Published Online: Sep. 27, 2019  

Solid-state Mamyshev oscillator Download: 601次

Author Affiliations
1 Department of Electrical, Computer & Energy Engineering, University of Colorado Boulder, Boulder, Colorado 80309, USA
2 e-mail: Mingming.Nie@colorado.edu
3 e-mail: ShuWei.Huang@colorado.edu
Copy Citation Text

Mingming Nie, Jiarong Wang, Shu-Wei Huang. Solid-state Mamyshev oscillator[J]. Photonics Research, 2019, 7(10): 10001175.

References

[1] W. R. Zipfel, R. M. Williams, W. W. Webb. Nonlinear magic: multiphoton microscopy in the biosciences. Nat. Biotechnol., 2003, 21: 1369-1377.

[2] R. R. Gattass, E. Mazur. Femtosecond laser micromachining in transparent materials. Nat. Photonics, 2008, 2: 219-225.

[3] C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, O. Akçaalan, S. Yavas, M. D. Asik, B. Öktem, H. Hoogland, R. Holzwarth, F. O. Ilday. Ablation-cooled material removal with ultrafast bursts of pulses. Nature, 2016, 537: 84-89.

[4] B. Ortac, M. Baumgartl, J. Limpert, A. Tünnermann. Approaching microjoule-level pulse energy with mode-locked femtosecond fiber lasers. Opt. Lett., 2009, 34: 1585-1587.

[5] U. Morgner, F. X. Kartner, S. H. Cho, Y. Chen, H. A. Haus, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, T. Tschudi. Sub-two-cycle pulses from a Kerr-lens mode-locked Ti:sapphire laser. Opt. Lett., 1999, 24: 411-413.

[6] M. Erkintalo, C. Aguergaray, A. Runge, N. G. Broderick. Environmentally stable all-PM all-fiber giant chirp oscillator. Opt. Express, 2012, 20: 22669-22674.

[7] M. Piché. Mode locking through nonlinear frequency broadening and spectral filtering. Proc. SPIE, 1994, 2041: 358-365.

[8] Z. Liu, Z. M. Ziegler, L. G. Wright, F. W. Wise. Megawatt peak power from a Mamyshev oscillator. Optica, 2017, 4: 649-654.

[9] W. Fu, L. G. Wright, P. Sidorenko, S. Backus, F. W. Wise. Several new directions for ultrafast fiber lasers. Opt. Express, 2018, 26: 9432-9463.

[10] A. Chong, J. Buckley, W. Renninger, F. W. Wise. All-normal-dispersion femtosecond fiber laser. Opt. Express, 2006, 14: 10095-10100.

[11] W. Liu, R. Liao, J. Zhao, J. Cui, Y. Song, C. Wang, M. Hu. Femtosecond Mamyshev oscillator with 10-MW-level peak power. Optica, 2019, 6: 194-197.

[12] P. Sidorenko, W. Fu, L. G. Wright, M. Olivier, F. W. Wise. Self-seeded, multi-megawatt, Mamyshev oscillator. Opt. Lett., 2018, 43: 2672-2675.

[13] K. Regelskis, J. Želudevičius, K. Viskontas, G. Račiukaitis. Generation of localized pulses from ytterbium-doped fiber ultrashort pulse generator based on self-phase modulation and alternating spectral filtering. Opt. Lett., 2015, 40: 5255-5258.

[14] M. Olivier, V. Boulanger, F. Guilbert-Savary, P. Sidorenko, F. W. Wise, M. Piché. A femtosecond fiber Mamyshev oscillator at 1550 nm. Opt. Lett., 2019, 44: 851-854.

[15] R. DeSalvo, D. J. Hagan, M. Sheik-Bahae, G. Stegeman, E. W. Van Stryland, H. Vanherzeele. Self-focusing and self-defocusing by cascaded second-order effects in KTP. Opt. Lett., 1992, 17: 28-30.

[16] G. Cerullo, S. De Silvestri, A. Monguzzi, D. Segala, V. Magni. Self-starting mode locking of a cw Nd:YAG laser using cascaded second-order nonlinearities. Opt. Lett., 1995, 20: 746-748.

[17] M. Bache, O. Bang, W. Krolikowski, J. Moses, F. W. Wise. Limits to compression with cascaded quadratic soliton compressors. Opt. Express, 2008, 16: 3273-3287.

[18] F. Ö. Ilday, F. W. Wise. Nonlinearity management a route to high-energy soliton fiber lasers. J. Opt. Soc. Am. B, 2002, 19: 470-476.

[19] S. Namiki, H. A. Haus. Noise of the stretched pulse fiber laser. I. Theory. IEEE J. Quantum Electron., 1997, 33: 649-659.

[20] M. Nie, Q. Liu, E. Ji, X. Cao, X. Fu, M. Gong. Design of high-gain single-stage and single-pass Nd:YVO4 amplifier pumped by fiber-coupled laser diodes: simulation and experiment. IEEE J. Quantum Electron., 2016, 52: 5100210.

[21] A. Minassian, B. A. Thompson, G. Smith, M. J. Damzen. High-power scaling (>100  W) of a diode-pumped TEM00 Nd:GdVO4 laser system. IEEE J. Sel. Top Quantum Electron., 2005, 11: 621-625.

[22] H. Zhang, X. Meng, L. Zhu, C. Wang, Y. T. Chow, M. Lu. Growth, spectra and influence of annealing effect on laser properties of Nd:YVO4 crystal. Opt. Mater., 2000, 14: 25-30.

[23] T. Taira, A. Mukai, Y. Nozawa, T. Kobayashi. Single-mode oscillation of laser-diode-pumped Nd:YVO4 microchip lasers. Opt. Lett., 1991, 16: 1955-1957.

[24] J. L. He, C. K. Lee, J. Y. J. Huang, S. C. Wang, C. L. Pan, K. F. Huang. Diode-pumped passively mode-locked multiwatt Nd:GdVO4 laser with a saturable Bragg reflector. Appl. Opt., 2003, 42: 5496-5499.

[25] Y. X. Fan, J. L. He, Y. G. Wang, S. Liu, H. T. Wang, X. Y. Ma. 2-ps passively mode-locked laser using an output-coupling-type semiconductor saturable absorber mirror. Appl. Phys. Lett., 2005, 86: 101103.

[26] S. J. Holmgren, V. Pasiskevicius, F. Laurell. Generation of 2.8 ps pulses by mode-locking a Nd:GdVO4 laser with defocusing cascaded Kerr lensing in periodically poled KTP. Opt. Express, 2005, 13: 5270-5278.

[27] Y. Kusama, Y. Tanushi, M. Yokoyama, R. Kawakami, T. Hibi, Y. Kozawa, T. Nemoto, S. Sato, H. Yokoyama. 7-ps optical pulse generation from a 1064-nm gain-switched laser diode and its application for two-photon microscopy. Opt. Express, 2014, 22: 5746-5753.

[28] M. Hanna, P. A. Lacourt, S. Poinsot, J. M. Dudley. Optical pulse generation using soliton-assisted time-lens compression. Opt. Express, 2005, 13: 1743-1748.

[29] T. Herr, E. Obrzud, S. Lecomte. Temporal solitons in microresonators driven by optical pulses. Nat. Photonics, 2017, 11: 600-607.

[30] F. Ö. Ilday, K. Beckwitt, Y. F. Chen, H. Lim, F. W. Wise. Controllable Raman-like nonlinearities from nonstationary, cascaded quadratic processes. J. Opt. Soc. Am. B, 2004, 21: 376-383.

[31] J. Moses, F. W. Wise. Controllable self-steepening of ultrashort pulses in quadratic nonlinear media. Phys. Rev. Lett., 2006, 97: 073903.

[32] V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. P. Pfeiffer, M. L. Gorodetsky, T. J. Kippenberg. Photonic chip-based optical frequency comb using soliton Cherenkov radiation. Science, 2016, 351: 357-360.

[33] M. Bache, F. W. Wise. Type-I cascaded quadratic soliton compression in lithium niobate: compressing femtosecond pulses from high-power fiber lasers. Phys. Rev. A, 2010, 81: 053815.

[34] AgrawalG. P., Nonlinear Fiber Optics, 4th ed. (Academic, 2006).

[35] J. A. Armstrong, N. Bloembergen, J. Ducuing, P. S. Pershan. Interactions between light waves in a nonlinear dielectric. Phys. Rev., 1962, 127: 1918-1939.

[36] NolteS.SchrempelF.DausingerF., Ultrashort Pulse Laser Technology: Laser Sources and Applications (Springer, 2015).

[37] F. Saltarelli, A. Diebold, I. J. Graumann, C. R. Phillips, U. Keller. Modelocking of a thin-disk laser with the frequency-doubling nonlinear-mirror technique. Opt. Express, 2017, 25: 23254-23266.

[38] K. L. Schepler, R. D. Peterson, P. A. Berry, J. B. McKay. Thermal effects in Cr2+:ZnSe thin disk lasers. IEEE J. Sel. Top. Quantum Electron., 2005, 11: 713-720.

[39] A. S. Kowligy, A. Lind, D. D. Hickstein, D. R. Carlson, H. Timmers, N. Nader, F. C. Cruz, G. Ycas, S. B. Papp, S. A. Diddams. Mid-infrared frequency comb generation via cascaded quadratic nonlinearities in quasi-phase-matched waveguides. Opt. Lett., 2018, 43: 1678-1681.

[40] J. Neuhaus, J. Kleinbauer, A. Killi, S. Weiler, D. Sutter, T. Dekorsy. Passively mode-locked Yb:YAG thin-disk laser with pulse energies exceeding 13 μJ by use of an active multipass geometry. Opt. Lett., 2008, 33: 726-728.

[41] J. Neuhaus, D. Bauer, J. Zhang, A. Killi, J. Kleinbauer, M. Kumkar, S. Weiler, M. Guina, D. H. Sutter, T. Dekorsy. Subpicosecond thin-disk laser oscillator with pulse energies of up to 25.9 microjoules by use of an active multipass geometry. Opt. Express, 2008, 16: 20530-20539.

Mingming Nie, Jiarong Wang, Shu-Wei Huang. Solid-state Mamyshev oscillator[J]. Photonics Research, 2019, 7(10): 10001175.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!