量子电子学报, 2020, 37 (4): 409, 网络出版: 2020-11-04   

大气对光学成像的影响及校正技术

Atmospheric effects on optical imaging and correction techniques
王英俭 1,2,*时东锋 1,2
作者单位
1 中国科学院合肥物质科学研究院安徽光学精密机械研究所, 中国科学院大气光学重点实验室, 安徽 合肥 230031
2 先进激光技术安徽省实验室, 安徽 合肥 230037
引用该论文

王英俭, 时东锋. 大气对光学成像的影响及校正技术[J]. 量子电子学报, 2020, 37(4): 409.

WANG Yingjian, SHI Dongfeng. Atmospheric effects on optical imaging and correction techniques[J]. Chinese Journal of Quantum Electronics, 2020, 37(4): 409.

参考文献

[1] Roggemann M C, Welsh B. Imaging Through Turbulence[M]. Boca Raton: CRC Press, 1996.

[2] He K M, Sun J, Tang X O. Single image haze removal using dark channel prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(12): 2341-2353.

[3] Rao Ruizhong. General characteristics of modulation transfer function of turbid atmosphere[J]. Acta Optica Sinica (光学学报), 2011, 31(9): 0900125 (in Chinese).

[4] Center for Adaptive Optics, University of California. The mission of the UC Center for Adaptive Optics is to develop, apply, and disseminate adaptive optics science and technology in service to scientific research, healthcare, and industry[OL]. http://cfao.ucolick.org/mission.php, 2010.

[5] Primot J, Rousset G, Fontanella J C. Deconvolution from wavefront sensing-A new technique for compensating turbulence-degraded images[J]. Journal of the Optical Society of America A-Optics Image Science and Vision, 1999, 7(9): 1598-1608.

[6] Roggemann M C, Welsh B M. Signal-to-noise ratio for astronomical imaging by deconvolution from wave-front sensing[J]. Applied Optics, 1994, 33(23): 5400-5414.

[7] Ford S D, Welsh B M, Roggemann M C. Constrained least-squares estimation in deconvolution from wave-front sensing[J]. Optics Communications, 1998, 151(3): 93-100.

[8] Yitzhaky Y, Dror I, Kopeika N S. Restoration of atmospherically blurred images according to weather-predicted atmospheric modulation transfer functions[J]. Optical Engineering, 1997, 36(11): 3064-3072.

[9] Kopeika N S, Sheayik T, Givati Z, et al. Restoration of satellite images based on atmospheric MTF[C]. International Symposium on Optical Science, Engineering, and Instrumentation, 1996, 2817: 106-117.

[10] Harmeling S, Sra S, Hirsch M, et al. Multiframe blind deconvolution, super-resolution, and saturation correction via incremental EM[C]. IEEE International Conference on Image Processing, 2010: 3313-3316.

[11] Hirsch M, Harmeling S, Sra S, et al. Online multi-frame blind deconvolution with super-resolution and saturation correction[J]. Astronomy & Astrophysics, 2011, 531: A9.

[12] Hope D A, Jefferies S M. Compact multiframe blind deconvolution[J]. Optics Letters, 2011, 36(6): 867-869.

[13] Sroubek F, Milanfar P. Robust multichannel blind deconvolution via fast alternating minimization[J]. IEEE Transactions on Image Processing, 2012, 21(4): 1687-1700.

[14] Frieden B R. Turbulent image reconstruction from a superposition model[J]. Optics Communications, 1993, 98(6): 241-244.

[15] Xiang Z, Milanfar P. Removing atmospheric turbulence via space-invariant deconvolution[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(1): 157-170.

[16] Mugnier L M, Robert C, Conan J M, et al. Myopic deconvolution from wave-front sensing[J]. Journal of the Optical Society of America A-Optics Image Science and Vision, 2001, 18(4): 862-872.

[17] Blanco L, Mugnier L M, Glanc M. Myopic deconvolution of adaptive optics retina images[C]. Society of Photo-Optical Instrumentation Engineers, 2011, 7904: 790412.

[18] Mugnier L M, Fusco T, Conan J M. MISTRAL: A myopic edge-preserving image restoration method, with application to astronomical adaptive-optics-corrected long-exposure images[J]. Journal of the Optical Society of America A-Optics Image Science and Vision, 2004, 21(10): 1841-1854.

[19] Hom E F Y, Marchis F, Lee T K, et al. AIDA: An adaptive image deconvolution algorithm with application to multi-frame and three-dimensional data[J]. Journal of the Optical Society of America A-Optics Image Science and Vision, 2007, 24(6): 1580-1600.

[20] Jefferies S M, Hart M. Deconvolution from wave front sensing using the frozen flow hypothesis[J]. Optics Express, 2011, 19(3): 1975-1984.

[21] Kopriva I, Garrood D J, Borjanovic V. Single frame blind image deconvolution by non-negative sparse matrix factorization[J]. Optics Communications, 2006, 266(2): 456-464.

[22] Jefferies S M, Hart M. Deconvolution from wave front sensing using the frozen flow hypothesis[J]. Optics Express, 2011, 19(3): 1975-1984.

[23] Tian Y, Rao C H, Wei K. Post-processing of adaptive optics images based on frame selection and multi-frame blind deconvolution[J]. Adaptive Optics Systems, 2008, 7015: 70152E.

[24] Zhong Yan. Lucky imaging[OL]. https://www.sohu.com/a/86854782-119737, 2016.

[25] Shi D F, Fan C Y, Zhang P F, et al. Adaptive optical ghost imaging through atmospheric turbulence[J]. Optics Express, 2012, 20(27): 27992-27998.

[26] Shi D F, Fan C Y, Zhang P F, et al. Two-wavelength ghost imaging through atmospheric turbulence[J]. Optics Express, 2013, 21(2): 2050-2064.

[27] Rao Ruizhong. Light Propagation in the Atmospheric Turbulence (光在湍流大气中的传播)[M]. Hefei: Anhui Science & Technology Press, 2005 (in Chinese).

[28] Wang Y J, Wu Y. Numerical simulation of propagation of diffuse reflection light of extended object[J]. Acta Optica Sinica (光学学报), 1998, 18(10): 1470-1472 (in Chinese).

王英俭, 时东锋. 大气对光学成像的影响及校正技术[J]. 量子电子学报, 2020, 37(4): 409. WANG Yingjian, SHI Dongfeng. Atmospheric effects on optical imaging and correction techniques[J]. Chinese Journal of Quantum Electronics, 2020, 37(4): 409.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!