激光与光电子学进展, 2018, 55 (9): 090002, 网络出版: 2018-09-08   

分布式光纤裂缝传感工程应用研究进展 下载: 1118次

Progress in Distributed Optical Fiber Crack Sensing Engineering
作者单位
昆明理工大学建筑工程学院, 云南 昆明 650500
引用该论文

吴永红, 朱莎, 许蔚, 张海明. 分布式光纤裂缝传感工程应用研究进展[J]. 激光与光电子学进展, 2018, 55(9): 090002.

Wu Yonghong, Zhu Sha, Xu Wei, Zhang Haiming. Progress in Distributed Optical Fiber Crack Sensing Engineering[J]. Laser & Optoelectronics Progress, 2018, 55(9): 090002.

参考文献

[1] Deif A, Martín-Pérez B, Cousin B, et al. Detection of cracks in a reinforced concrete beam using distributed Brillouin fibre sensors[J]. Smart Materials and Structures, 2010, 19(5): 055014.

[2] Afzal M H B, Kabir S, Sidek O. Fiber optic sensor-based concrete structural health monitoring[C]∥Saudi International Electronics Communications and Photonics Conference, 2011: 12063502.

[3] 赵津磊, 包腾飞, 戚丹. 基于塑料光纤裂缝传感器的裂缝开度预测[J]. 水电能源科学, 2015, 33(2): 131-134.

    Zhao J L, Bao T F, Qi D. Prediction of crack width based on plastic optical fiber crack sensor[J]. Water Resources and Power, 2015, 33(2): 131-134.

[4] 秦权. 桥梁结构的健康监测[J]. 中国公路学报, 2000, 13(2): 37-42.

    Qin Q. Health monitoring of long-span bridges[J]. China Journal of Highway and Transport, 2000, 13(2): 37-42.

[5] 刘迪仁. 长距离分布式布里渊散射光纤传感技术研究[D]. 杭州: 浙江大学, 2005: 2-3.

    Liu D R. Research on long distance distributed Brillouin scattering fiber sensing technology[D]. Hangzhou: Zhejiang University, 2005: 2-3.

[6] Nikles M, Thevenaz L, Robert P A. Brillouin gain spectrum characterization in single-mode optical fibers[J]. Journal of Lightwave Technology, 1997, 15(10): 1842-1851.

[7] 吴永红, 徐洪钟, 高培伟, 等. 混凝土高拱坝裂缝光纤监测网络构型的优化[J]. 水利水电科技进展, 2006, 26(6): 37-39.

    Wu Y H, Xu H Z, Gao P W, et al. Optimization of optical fiber monitoring network structure for crack detection of high concrete arch dams[J]. Advances in Science and Technology of Water Resources, 2006, 26(6): 37-39.

[8] Li S Z, Wu Z S. Development of distributed long-gage fiber optic sensing system for structural health monitoring[J]. Structural Health Monitoring, 2007, 6(2): 133-143.

[9] 梁德志, 孙丽, 王世磊, 等. 应用FBG传感器对混凝土结构裂缝的监测[C]∥结构工程新进展国际论坛, 2008: 810-815.

    Liang D Z, Sun L, Wang S L, et al. Monitoring the cracks in concrete structures using FBG sensors[C]∥International Forum on Advances in Structural Engineering, 2008: 810-815.

[10] 包腾飞, 钱飞. 混凝土裂缝分布式光纤光栅监测能力研究[J]. 压电与声光, 2011, 33(4): 540-543.

    Bao T F, Qian F. Study on crack monitoring capability of distributed fiber Bragg grating sensors in concrete structures[J]. Piezoelectrics & Acoustooptics, 2011, 33(4): 540-543.

[11] 田石柱, 邱伟宸, 温科, 等. FBG传感器关于裂缝及损伤的监测应用研究[J]. 激光技术, 2017, 41(1): 129-132.

    Tian S Z, Qiu W C, Wen K, et al. Application research on FBG sensor in the monitoring of fracture and damage[J]. Laser Technology, 2017, 41(1): 129-132.

[12] Kim N. Crack detection of structures using optical time domain reflectometry (OTDR) method[J]. Proceedings of SPIE, 2000, 3988: 276-283.

[13] 李剑芝, 孙宝臣, 杜彦良, 等. 混凝土裂缝的监测[J]. 传感技术学报, 2006, 19(4): 1129-1132.

    Li J Z, Sun B C, Du Y L, et al. Crack monitoring of concrete[J]. Chinese Journal of Sensors and Actuators, 2006, 19(4): 1129-1132.

[14] 欧进萍, 侯爽, 周智, 等. 多段分布式光纤裂缝监测系统及其应用[J]. 压电与声光, 2007, 29(2): 144-147.

    Ou J P, Hou S, Zhou Z, et al. The multi-line distributed fiber optic crack detection system and its application[J]. Piezoelectectrics & Acoustooptics, 2007, 29(2): 144-147.

[15] 杨莉. Brillouin OTDR在混凝土裂缝检测中的应用研究[D]. 昆明: 昆明理工大学, 2011.

    Yang L. Application of Brillouin OTDR in concrete crack detection[D]. Kunming: Kunming University of Science and Technology, 2011.

[16] 黄定卫, 张莹, 赵建伟. 基于OTDR的混凝土裂缝测量技术[J]. 光纤与电缆及其应用技术, 2011(3): 31-33.

    Huang D W, Zhang Y, Zhao J W. Measurement of concrete cracks based on OTDR[J]. Optical Fiber & Electric Cable and Their Applications, 2011(3): 31-33.

[17] 贾强强, 苏怀智, 金盛杰. 混凝土面板裂缝光纤监测网络构型的优化[J]. 水电能源科学, 2017, 35(9): 58-60.

    Jia Q Q, Su H Z, Jin S J. Optimization of network structure of optical fiber monitoring cracks in concrete panel[J]. Water Resources and Power, 2017, 35(9): 58-60.

[18] Wu Z S, Takahashi T, Sudo K. An experimental investigation on continuous strain and crack monitoring with fiber optic sensors[J]. Concrete Research and Technology, 2002, 13(2): 139-148.

[19] 施斌, 徐洪钟, 张丹, 等. BOTDR应变监测技术应用在大型基础工程健康诊断中的可行性研究[J]. 岩石力学与工程学报, 2004, 23(3): 493-499.

    Shi B, Xu H Z, Zhang D, et al. Feasibility study on application of BOTDR to health monitoring for large infrastructure engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(3): 493-499.

[20] Wu Z S, Xu B, Takahashi T, et al. Performance of a BOTDR optical fibre sensing technique for crack detection in concrete structures[J]. Structure and Infrastructure Engineering, 2008, 4(4): 311-323.

[21] Feng X, Zhou J, Sun C S, et al. Theoretical and experimental investigations into crack detection with BOTDR-distributed fiber optic sensors[J]. Journal of Engineering Mechanics, 2013, 139(12): 1797-1807.

[22] 卢毅, 施斌, 席均, 等. 基于BOTDR的地裂缝分布式光纤监测技术研究[J]. 工程地质学报, 2014, 22(1): 8-13.

    Lu Y, Shi B, Xi J, et al. Field study of BOTDR-based distributed monitoring technology for ground fissures[J]. Journal of Engineering Geology, 2014, 22(1): 8-13.

[23] 苏晶文, 姜月华, 施斌, 等. BOTDR分布式光纤监测技术在地裂缝监测中的应用研究[C]∥中国地质学会2015学术年会论文摘要汇编(下册), 2015: 33-38.

    Su J W, Jiang Y H, Shi B, et al. Research on the application of BOTDR distributed optical fiber monitoring technology in ground crack monitoring[C]∥Compilation of Abstract of the Paper of 2015 Academic Annual Conference of China Geological Society (Volume II), 2015: 33-38.

[24] 钱振东, 黄卫, 关永胜, 等. BOTDA在沥青混凝土铺装层裂缝监测中的应用[J]. 东南大学学报(自然科学版), 2008, 38(5): 799-803.

    Qian Z D, Huang W, Guan Y S, et al. Application of BOTDA on cracking monitoring for asphalt concrete pavement[J]. Journal of Southeast University (Natural Science Edition), 2008, 38(5): 799-803.

[25] Iwashita K, Wu Z, Hashimoto A, et al. Monitoring of concrete crack width with optic fiber sensors[C]∥The Japan Society of Mechanical Engineers, 2009: 114-118.

[26] Guo T, Li A Q, Song Y S, et al. Experimental study on strain and deformation monitoring of reinforced concrete structures using PPP-BOTDA[J]. Science in China Series E: Technological Sciences, 2009, 52(10): 2859-2868.

[27] 何勇, 姜帅, 毛江鸿, 等. 结构裂缝的分布式光纤监测方法及试验研究[J]. 土木建筑与环境工程, 2012, 34(1): 1-6.

    He Y, Jiang S, Mao J H, et al. Cracking monitoring method and experiment with distributed fiber sensor[J]. Journal of Civil, Architectural & Environmental Engineering, 2012, 34(1): 1-6.

[28] Zhang H. Study on PPP-BOTDA technology for concrete crack monitoring[J]. Applied Mechanics & Materials, 2013, 333/334/335: 1582-1585.

[29] 谢超超. 基于BOTDA分布式光纤传感器的结构健康监测研究[D]. 哈尔滨: 哈尔滨工业大学, 2013.

    Xie C C. Research on structural health monitoring based on BOTDA distributed fiber-optic sensor[D]. Harbin: Harbin Institute of Technology, 2013.

[30] 康师表. 基于BOTDA的组合梁桥面板裂缝监测技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2013.

    Kang S B. Crack monitoring of composite beam bridge deck using BOTDA[D]. Harbin: Harbin Institute of Technology, 2013.

[31] 毛江鸿, 崔磊, 金伟良, 等. 基于分布式光纤传感的混凝土裂缝识别与监测试验研究[J]. 传感技术学报, 2014, 27(9): 1298-1304.

    Mao J H, Cui L, Jin W L, et al. Experimental research on concrete crack recognizing and monitoring based on distributed fiber sensor[J]. Chinese Journal of Sensors and Actuators, 2014, 27(9): 1298-1304.

[32] 姜帅. 基于BOTDA的钢筋混凝土锈裂全过程监测及预测模型研究[D]. 杭州: 浙江大学, 2014.

    Jiang S. Study on the whole process monitoring and prediction model of reinforced concrete rust crack based on BOTDA[D]. Hangzhou: Zhejiang University, 2014.

[33] Bao Y, Tang F, Chen Y, et al. Concrete pavement monitoring with PPP-BOTDA distributed strain and crack sensors[J]. Smart Structures & Systems, 2016, 18(3): 405-423.

[34] 贾强强, 苏怀智, 冯龙龙, 等. 混凝土结构开裂监测的PPP-BOTDA分布式光纤技术试验研究[J]. 光电子·激光, 2016, 27(8): 832-837.

    Jia Q Q, Su H Z, Feng L L, et al. Experimental research on concrete structure crack monitoring based on PPP-BOTDA technology[J]. Journal of Optoelectronics·Laser, 2016, 27(8): 832-837.

[35] 陶思聪, 赖博文, 雷鹰, 等. 钢筋混凝土梁表面多裂缝扩展的试验研究[J]. 厦门大学学报(自然科学版), 2016, 55(4): 596-600.

    Tao S C, Lai B W, Lei Y, et al. Experimental study of multi-crack propagation monitoring on the surface of reinforced concrete beam[J]. Journal of Xiamen University (Natural Science), 2016, 55(4): 596-600.

[36] Xu Z, Feng X, Zhong S, et al. Surface crack detection in prestressed concrete cylinder pipes using BOTDA strain sensors[J]. Mathematical Problems in Engineering, 2017, 2017: 1-12.

[37] Ong S S L, Kumagai H, Iwaki H, et al. Crack detection in concrete using a BOCDA based fiber optic distributed strain sensor[C]∥Proceedings of the IEICE General Conference: The Institute of Electronics, Information and Communication Engineers, 2003: 178-182.

[38] Imai M, Nakano R, Kono T, et al. Crack detection application for fiber reinforced concrete using BOCDA-based optical fiber strain sensor[J]. Journal of Structural Engineering, 2010, 136(8): 1001-1008.

[39] Sigurdardottir D H, Glisic B. On-site validation of fiber-optic methods for structural health monitoring: Streicker Bridge[J]. Journal of Civil Structural Health Monitoring, 2015, 5(4): 529-549.

[40] Imai M. Seven-year-long crack detection monitoring by Brillouin-based fiber optic strain sensor[J]. Proceedings of SPIE, 2015, 9435: 94351Y.

[41] Bao X, Chen L. Recent progress in optical fiber sensors based on Brillouin scattering at University of Ottawa[J]. Photonic Sensors, 2011, 1(2): 102-117.

[42] Li W, Bao X, Li Y, et al. Differential pulse-width pair BOTDA for high spatial resolution sensing[J]. Optics Express, 2008, 16(26): 21616-21625.

[43] 周智, 李冀龙, 欧进萍. 埋入式光纤光栅界面应变传递机理与误差修正[J]. 哈尔滨工业大学学报, 2006, 38(1): 49-55.

    Zhou Z, Li J L, Ou J P. Interface strain transfer mechanism and error modification of embedded FBG strain sensors[J]. Journal of Harbin Institute of Technology, 2006, 38(1): 49-55.

[44] 丁睿. 工程健康监测的分布式光纤传感技术及应用研究[D]. 成都: 四川大学, 2005.

    Ding R. Research on distributed fiber sensing technology and its application to civil structural health monitoring[D]. Chengdu: Sichuan University, 2005.

[45] 陈强. 钢筋混凝土粘结性能和梁裂缝的数值模拟[D]. 杭州: 浙江大学, 2011.

    Chen Q. Numerical simulation on bond-slip relationship of reinforced concrete and crack in reinforced concrete beam[D]. Hangzhou: Zhejiang University, 2011.

[46] 崔何亮, 张丹, 施斌. 布里渊分布式传感的空间分辨率及标定方法[J]. 浙江大学学报(工学版), 2013, 47(7): 1232-1237.

    Cui H L, Zhang D, Shi B. Spatial resolution and its calibration method for Brillouin scattering based distributed sensors[J]. Journal of Zhejiang University (Engineering Science), 2013, 47(7): 1232-1237.

[47] 杨孟, 苏怀智, 郭芝韵, 等. PPP-BOTDA分布式光纤传感技术在水工结构物健康监测中的可行性探讨[J]. 中国科技论文, 2014, 9(5): 499-501.

    Yang M, Su H Z, Guo Z Y, et al. Feasibility study of hydraulic structures health monitoring on PPP-BOTDA distributed optical fiber sensing technology[J]. China Sciencepaper, 2014, 9(5): 499-501.

[48] 吴永红, 屈文俊, 邵长江, 等. 光纤光栅应变传感器光-力转换的理论方程[J]. 光学学报, 2009, 29(8): 2067-2070.

    Wu Y H, Qu W J, Shao C J, et al. Basic optical-mechanical transformation theoretical equation for FBG strain sensors[J]. Acta Optica Sinica, 2009, 29(8): 2067-2070.

[49] 赵丽华. 基于分布式光纤传感技术的大跨箱梁桥裂缝监测研究[D]. 南京: 东南大学, 2011.

    Zhao L H. Study on crack monitoring of box girder bridges with distributed optical fiber sensing technique[D]. Nanjing: Southeast University, 2011.

[50] 陆飞. 分布式光纤传感技术在土木工程结构监测中的应用研究[D]. 南京: 东南大学, 2007.

    Lu F. Application of distributed optical fiber sensing technology in civil engineering structure monitoring[D]. Nanjing: Southeast University, 2007.

[51] 刘晓溅. 基于OTDR的分布式光纤裂缝传感器特性研究[D]. 大连: 大连理工大学, 2005.

    Liu X J. Experiment study on distributed optical fiber sensor based on OTDR for crack detection[D]. Dalian: Dalian University of Technology, 2005.

[52] 邓涛. 混凝土重力坝裂缝扩展过程的数值模拟[D]. 大连: 大连理工大学, 2009.

    Deng T. Numerical simulation for crack propagation process in concrete gravity dam[D]. Dalian: Dalian University of Technology, 2009.

[53] 武扬. 基于分布式应变监测的结构损伤定位研究[D]. 大连: 大连理工大学, 2014.

    Wu Y. Research on structural damage location based on distributed strain monitoring[D]. Dalian: Dalian University of Technology, 2014.

[54] 周智, 欧进萍. FBG智能传感器及其在土木工程中的应用研究[J]. 功能材料, 2004, 35(z1): 152-156.

    Zhou Z, Ou J P. Study on smart FBG sensors and their applications in civil engineering[J]. Journal of Functional Materials, 2004, 35(z1): 152-156.

[55] 孙曼, 植涌, 叶丰, 等. 钢-混凝土组合桥面板模型混凝土顶裂缝损伤全过程检测[J]. 世界桥梁, 2006, 34(4): 60-63.

    Sun M, Zhi Y, Ye F, et al. Full-process test of cracking damages in top of concrete of steel and concrete composite deck slab model[J]. World Bridges, 2006, 34(4): 60-63.

[56] 吴永红, 蔡海文, 刘浩吾, 等. 裂缝光纤传感的工程应用[J]. 光电子·激光, 2007, 18(12): 1438-1441.

    Wu Y H, Cai H W, Liu H W, et al. Study on engineering applicability of optic fiber crack sensing[J]. Journal of Optoelectronics·Laser, 2007, 18(12): 1438-1441.

[57] Mao J H, Chen J Y, Cui L, et al. Monitoring the corrosion process of reinforced concrete using BOTDA and FBG sensors[J]. Sensors, 2015, 15(4): 8866-8883.

[58] 毛江鸿. 分布式光纤传感技术在结构应变及开裂监测中的应用研究[D]. 杭州: 浙江大学, 2012.

    Mao J H. Research on application of distributed optical fiber sensor in structural strain and cracking monitoring[D]. Hangzhou: Zhejiang University, 2012.

[59] 张旭苹, 张益昕, 王峰, 等. 基于瑞利散射的超长距离分布式光纤传感技术[J]. 中国激光, 2016, 43(7): 0700002.

    Zhang X P, Zhang Y X, Wang F, et al. Ultra-long fully distributed optical fiber sensor based on Rayleigh scattering effect[J]. Chinese Journal of Lasers, 2016, 43(7): 0700002.

[60] Kishida K, Li C H, Lin S, et al. Pulsed pre-pump method to achieve cm-order spatial resolution in Brillouin distributed measuring technique[R]. Technical Report of IEICE OFT, 2004, 104: 15-20.

[61] Kishida K, Li C H, Nishiguchi K. Pulse pre-pump method for cm-order spatial resolution of BOTDA[J]. Proceedings of SPIE, 2005, 5855: 559-562.

[62] Tsuda T. PPP-BOTDA method to achieve cm-order spatial resolution in Brillouin distributed measuring technique[R]. Technical Report of IEICE OFT, 2005, 108: 55-60.

[63] Kishida K, Li C H. Pulse pre-pump-BOTDA technology for new generation of distributed strain measuring system[C]∥1st International Symposium on Photoelectric Sensor Monitoring of Geological Engineering, China Geological Society & International Environmental Geotechnical Engineering Association, 2005: 471-477.

[64] Koyamada Y, Sakairi Y, Takeuchi N, et al. Novel technique to improve spatial resolution in Brillouin optical time-domain reflectometry[J]. IEEE Photonics Technology Letters, 2007, 19(23): 1910-1912.

[65] 罗源, 闫连山, 邵理阳, 等. 基于布里渊光时域分析传感系统的格雷-差分脉冲混合编码技术[J]. 光学学报, 2016, 36(8): 0806002.

    Luo Y, Yan L S, Shao L Y, et al. Golay-differential pulse hybrid coding technology based on Brillouin optical time domain analysis sensors[J]. Acta Optica Sinica, 2016, 36(8): 0806002.

[66] 彭映成, 钱海, 鲁辉, 等. 基于BOTDA的分布式光纤传感技术新进展[J]. 激光与光电子学进展, 2013, 50(10): 100005.

    Peng Y C, Qian H, Lu H, et al. New research progress on distributed optical fiber sensor technique based on BOTDA[J]. Laser & Optoelectronics Progress, 2013, 50(10): 100005.

[67] 李欢. 脉冲预泵浦BOTDA系统关键技术研究[D]. 北京: 华北电力大学, 2013.

    Li H. Research on the key technology of pulse pre-pump BOTDA system[D]. Beijing: North China Electric Power University, 2013.

[68] 王宏宪, 张丹, 李长圣, 等. 基于PPP-BOTDA的膨胀土裂隙发育特征的分析与表征方法研究[J]. 工程地质学报, 2014, 22(2): 210-217.

    Wang H X, Zhang D, Li C S, et al. PPP-BOTDA based experiments on characterization and description methods for cracking of expansive soil[J]. Journal of Engineering Geology, 2014, 22(2): 210-217.

[69] Meng D, Ansari F, Feng X. Detection and monitoring of surface micro-cracks by PPP-BOTDA[J]. Applied Optics, 2015, 54(16): 4972-4978.

[70] 周子超, 王小林, 粟荣涛, 等. 分布式光纤传感在光纤激光中的应用研究[J]. 激光与光电子学进展, 2016, 53(8): 080006.

    Zhou Z C, Wang X L, Su R T, et al. Application of distributed fiber sensing in fiber lasers[J]. Laser & Optoelectronics Progress, 2016, 53(8): 080006.

[71] Ansari F, Yuan L. Mechanics of bond and interface shear transfer in optical fiber sensors[J]. Journal of Engineering Mechanics, 1998, 124(4): 385-394.

[72] 顾嘉丰, 任青文. 水工混凝土弥散型裂缝数值模型中开裂判据的研究[J]. 工程力学, 2015, 32(6): 84-91.

    Gu J F, Ren Q W. Study on hydraulic concrete cracking criterion in smeared crack numerical model[J]. Engineering Mechanics, 2015, 32(6): 84-91.

[73] 吴永红. 光纤光栅应变传感光力转换关系及耐久性封装与保护[D]. 上海: 同济大学, 2009.

    Wu Y H. Opto-mechanical transformation-relationship for fiber optic grating sensing and durability encapsulation and protection[D]. Shanghai: Tongji University, 2009.

[74] 李东升, 李宏男. 埋入式封装的光纤光栅传感器应变传递分析[J]. 力学学报, 2005, 37(4): 435-441.

    Li D S, Li H N. Strain transferring analysis of embedded fiber Bragg grating sensors[J]. Chinese Journal of Theoretical and Applied Mechanics, 2005, 37(4): 435-441.

[75] 吴永红, 邵长江, 屈文俊, 等. 传感光纤光栅标准化埋入式封装的理论与实验研究[J]. 中国激光, 2010, 37(5): 1290-1293.

    Wu Y H, Shao C J, Qu W J, et al. Basic theoretical model and its experimental investigation for standard embedded sensing fiber Bragg grating packaging[J]. Chinese Journal of Lasers, 2010, 37(5): 1290-1293.

[76] 张宝祥. 多种受力状态下结构分布式光纤传感应变传递及裂纹监测[D]. 哈尔滨: 哈尔滨工业大学, 2015.

    Zhang B X. Strain transmission and cracks determination of structures under various loading conditions by distributed optical fiber sensors[D]. Harbin: Harbin Institute of Technology, 2015.

[77] 尤春安, 战玉宝, 刘秋媛, 等. 预应力锚索锚固段的剪滞-脱黏模型[J]. 岩石力学与工程学报, 2013, 32(4): 800-806.

    You C A, Zhan Y B, Liu Q Y, et al. Shear lag-debonding model for anchorage section of prestressed anchor cable[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(4): 800-806.

[78] 葛小珲. 钢筋混凝土梁裂缝间距的试验研究[D]. 重庆: 重庆大学, 2007.

    Ge X H. Experimental study on fracture spacing of reinforced concrete beams[D]. Chongqing: Chongqing University, 2007.

[79] Ansari F. Sensing issues in civil structural health monitoring[M]. Amsterdam: Springer, 2005.

[80] Wan K T, Leung C K Y, Olson N G. Investigation of the strain transfer for surface-attached optical fiber strain sensors[J]. Smart Materials & Structures, 2008, 17(3): 035037.

[81] Imai M, Feng M. Sensing optical fiber installation study for crack identification using a stimulated Brillouin-based strain sensor[J]. Structural Health Monitoring, 2012, 11(5): 501-509.

[82] Ravet F, Bao X, Ozbakkaloglu T, et al. Signature of structure failure using asymmetric and broadening factors of Brillouin spectrum[J]. IEEE Photonics Technology Letters, 2006, 18(2): 394-396.

[83] Zhang H, Wu Z. Performance evaluation of BOTDR-based distributed fiber optic sensors for crack monitoring[J]. Structural Health Monitoring, 2008, 7(2): 143-156.

[84] Ravet F, Briffod F, Glisic B, et al. Submillimeter crack detection with Brillouin-based fiber-optic sensors[J]. IEEE Sensors Journal, 2009, 9(11): 1391-1396.

[85] Ravet F. Distributed Brillouin sensor application to structural failure detection[M]∥New developments in sensing technology for structural health monitoring. Heidelberg: Springer, 2011: 93-136.

[86] Martín-Pérez B, Deif A, Cousin B, et al. Strain monitoring in a reinforced concrete slab sustaining service loads by distributed Brillouin fibre optic sensors[J]. Canadian Journal of Civil Engineering, 2010, 37(10): 1341-1349.

[87] Glisic B, Inaudi D. Development of method for in-service crack detection based on distributed fiber optic sensors[J]. Structural Health Monitoring, 2011, 11(2): 161-171.

[88] 毛江鸿, 崔磊, 何勇, 等. 基于分布式光纤的钢筋混凝土锈胀开裂监测试验研究[J]. 传感技术学报, 2014, 27(8): 1147-1153.

    Mao J H, Cui L, He Y, et al. Experimental research on monitoring concrete expansion and cracking induced by corrosion based on distributed optical fiber sensor[J]. Chinese Journal of Sensors and Actuators, 2014, 27(8): 1147-1153.

[89] 刘德华. 超长距离分布式光纤传感技术及其工程应用[D]. 杭州: 浙江大学, 2005.

    Liu D H. Study on super-long distance distributed optical fiber sensing technology and its application[D]. Hangzhou: Zhejiang University, 2005.

[90] Marsavina L, Audenaert K, de Schutter G, et al. Experimental and numerical determination of the chloride penetration in cracked concrete[J]. Construction and Building Materials, 2009, 23(1): 264-274.

[91] Wang K, Jansen D C, Shah S P, et al. Permeability study of cracked concrete[J]. Cement & Concrete Research, 1997, 27(3): 381-393.

[92] Jaffer S J, Hansson C M. The influence of cracks on chloride-induced corrosion of steel in ordinary Portland cement and high performance concretes subjected to different loading conditions[J]. Corrosion Science, 2008, 50(12): 3343-3355.

[93] 付传清, 金南国, 金贤玉, 等. 混凝土试件自然裂缝产生装置研制及应用[J]. 实验技术与管理, 2014, 31(5): 75-79.

    Fu C Q, Jin N G, Jin X Y, et al. Development of natural cracks generating device used in concrete specimens and its application[J]. Experimental Technology and Management, 2014, 31(5): 75-79.

[94] 丁睿, 刘浩吾, 罗凤林, 等. 光纤传感技术在巫峡长江大桥中的应用[J]. 四川大学学报(工程科学版), 2004, 36(6): 24-27.

    Ding R, Liu H W, Luo F L, et al. Technical application of fiber sensing in Wu Gorge Bridge[J]. Journal of Sichuan University (Engineering Science Edition), 2004, 36(6): 24-27.

[95] 孙曼, 陈建春, 陈绪高, 等. 冶勒大坝心墙基座裂缝的分布式光纤传感监测[C]∥第三届地质(岩土)工程光电传感监测国际论坛, 2010: 75-78.

    Sun M, Chen J C, Chen X G, et al. Distributed fiber sensing and crack monitoring of basement of core of Yele dam[C]∥3rd International Forum on Opto-Electronic Sensor-Based Monitoring in Geo-Engineering, 2010: 75-78.

吴永红, 朱莎, 许蔚, 张海明. 分布式光纤裂缝传感工程应用研究进展[J]. 激光与光电子学进展, 2018, 55(9): 090002. Wu Yonghong, Zhu Sha, Xu Wei, Zhang Haiming. Progress in Distributed Optical Fiber Crack Sensing Engineering[J]. Laser & Optoelectronics Progress, 2018, 55(9): 090002.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!