中国激光, 2013, 40 (1): 0101001, 网络出版: 2013-04-12   

光子晶体光纤飞秒激光技术研究进展 下载: 1311次

Advances in Femtosecond Laser Technologies with Photonic Crystal Fibers
作者单位
天津大学精密仪器与光电子工程学院超快激光研究室 光电信息技术教育部重点实验室, 天津 300072
引用该论文

柴路, 胡明列, 方晓惠, 刘博文, 宋有建, 栗岩锋, 王清月. 光子晶体光纤飞秒激光技术研究进展[J]. 中国激光, 2013, 40(1): 0101001.

Chai Lu, Hu Minglie, Fang Xiaohui, Liu Bowen, Song Youjian, Li Yanfeng, Wang Qingyue. Advances in Femtosecond Laser Technologies with Photonic Crystal Fibers[J]. Chinese Journal of Lasers, 2013, 40(1): 0101001.

参考文献

[1] J. C. Knight. Photonic crystal fibres[J]. Nature, 2003, 424(6950): 847~851

[2] P. Russell. Photonic crystal fibers[J]. Science, 2003, 299(5605): 358~362

[3] J. C. Knight, J. Broeng, T. A. Birks et al.. Photonic band gap guidance in optical fibers[J]. Science, 1998, 282(5393): 1476~1478

[4] F. Luan, A. K. George, T. D. Hedley et al.. All-solid photonic bandgap fiber[J]. Opt. Lett., 2004, 29(20): 2369~2371

[5] N. M. Litchinitser, A. K. Abeeluck, C. Headley et al.. Antiresonant reflecting photonic crystal optical waveguides[J]. Opt. Lett., 2002, 27(18): 1592~1594

[6] R. F. Cregan, B. J. Mangan, J. C. Knight et al.. Single-mode photonic band gap guidance of light in air[J]. Science, 1999, 285(5433): 1537~1539

[7] J. C. Knight, T. A. Birks, P. St. J. Russell et al.. All-silica single-mode optical fiber with photonic crystal cladding[J]. Opt. Lett., 1996, 21(19): 1547~1549

[8] P. St. J. Russell. Photonic-crystal fibers[J]. J. Lightwave Tech., 2006, 24(12): 4729~4749

[9] Yanfeng Li, Minglie Hu, Lu Chai et al.. Enhanced nonlinear effects in photonic crystal fibers[J]. Front. Phys. China, 2006, 1(2): 160~170

[10] 胡明列, 宋有建, 刘博文 等. 光子晶体光纤飞秒激光技术研究进展及其前沿应用[J]. 中国激光, 2009, 36(7): 1660~1670

    Hu Minglie, Song Youjian, Liu Bowen et al.. Development and advanced applications of femtosecond photonic crystal fiber laser technique[J]. Chinese J. Lasers, 2009, 36(7): 1660~1670

[11] P. St J. Russell. Photonic crystal fibers: a historical account[J]. IEEE Lasers & Electro-Optics Society Newsletter, 2007, 21(5): 11~15

[12] A. Apolonski, B. Povazay, A. Unterhuber et al.. Spectral shaping of supercontinuum in a cobweb photonic-crystal fiber with sub-20-fs pulses[J]. J. Opt. Soc. Am. B, 2002, 19(9): 2165~2170

[13] A. M. Zheltikov. Let there be white light: supercontinuum generation by ultrashort laser pulses[J]. Physics Uspekhi, 2006, 49(6): 605~628

[14] B. Schenkel, R. Paschoyya, U. Keller. Pulse compression with supercontinuun generation in microstructure fibers[J]. J. Opt. Soc. Am. B, 2005, 22(3): 687~693

[15] O. Cohen, J. S. Lundeen, B. J. Smith et al.. Tailored photon-pair generation in optical fibers[J]. Phys. Rev. Lett., 2009, 102(12): 123603

[16] J. K. Ranka, R. S. Windeler, A. J. Stentz. Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm[J]. Opt. Lett., 2000, 25(1): 25~27

[17] J. M. Dudley, G. Genty, S. Coen. Supercontinuum generation in photonic crystal fiber[J]. Rev. Mod. Phys., 2006, 78(4): 1135~1184

[18] 王清月, 胡明列, 柴路. 光子晶体光纤非线性光学研究新进展[J]. 中国激光, 2006, 33(1): 57~66

    Wang Qingyue, Hu Minglie, Chai Lu. Progress in nonlinear optics with photonic crystal fibers[J]. Chinese J. Lasers, 2006, 33(1): 57~66

[19] P. Domachuk, N. A.Wolchover, M. Cronin-Golomb et al.. Over 4000 nm bandwidth of mid-IR supercontinum generation in sub-centimeter segments of highly nonlinear tellurite PCFs[J]. Opt. Express, 2008, 16(10): 7161~7168

[20] S. P. Stark, J. C. Travers, P. St. J. Russell. Extreme supercontinuum generation to the deep UV[J]. Opt. Lett., 2012, 37(5): 770~772

[21] X. H. Fang, M. L. Hu, L. L. Huang et al.. Multiwatt octave-spanning supercontinuum generation in multicore photonic-crystal fiber[J]. Opt. Lett., 2012, 37(12): 2292~2294

[22] 方晓惠, 胡明列, 栗岩锋 等. 七芯光子晶体光纤结构优化的数值分析[J]. 物理学报, 2009, 58(4): 2495~2500

    Fang Xiaohui, Hu Minglie, Li Yanfeng et al.. Numerical analysis for structure optimization of Seven-core photonic crystal fibers[J]. Acta Physica Sinica, 2009, 58(4): 2495~2500

[23] X. H. Fang, M. L. Hu, Y. F. Li et al.. Hybrid multicore photonic-crystal fiber for in-phase supermode selection[J]. Opt. Lett., 2010, 35(4): 493~495

[24] C. K. Nielsen, K. G. Jespersen, S. R. Keiding. A 158 fs 5.3 nJ fiber-laser system at 1 μm using photonic bandgap fibers for dispersion control and pulse compression[J]. Opt. Express, 2006, 14(13): 6063~6068

[25] A. Isomki, O. G. Okhotnikov. All-fiber ytterbium soliton mode-locked laser with dispersion control by solid-core photonic bandgap fiber[J]. Opt. Express, 2006, 14(10): 4368~4373

[26] A. Bétourné, A. Kudlinski, G. Bouwmans et al.. Control of supercontinuum generation and soliton self-frequency shift in solid-core photonic bandgap fibers[J]. Opt. Lett., 2009, 34(20): 3083~3085

[27] B. W. Liu, M. L. Hu, X. H. Fang et al.. Tunable bandpass filter with solid-core photonic bandgap fiber and bragg fiber[J]. IEEE Photon. Tech. Lett., 2008, 20(8): 581~583

[28] B. Hitz. Easy-to-tune all-fiber bandpass filter[J]. Phonics Spectra, 2008, 94(6), http://www.photonics.com/Article.aspx AID=33897

[29] F. Benabid, F. Couny, J. C. Knight et al.. Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres[J]. Nature, 2005, 434(7032): 488~491

[30] G. Humbert, J. C. Knight, G. Bouwmans et al.. Hollow core photonic crystal fibers for beam delivery[J]. Opt. Express, 2004, 12(8): 1477~1484

[31] D. G. Ouzounov, F. R. Ahmad, D. Müller et al.. Generation of megawatt optical solitons in hollow-core photonic band-gap fibers[J]. Science, 2003, 301(5640): 1702~1704

[32] F. Luan, J. C. Knight, P. St. J. Russell et al.. Femtosecond soliton pulse delivery at 800 nm wavelength in hollow-core photonic bandgap fibers[J]. Opt. Express, 2004, 12(5): 835~840

[33] P. J. Mosley, W. C. Huang, M. G. Welch et al.. Ultrashort pulse compression and delivery in a hollow-core photonic crystal fiber at 540 nm wavelength[J]. Opt. Lett., 2010, 35(21): 3589~3591

[34] Y. Y. Wang, X. Peng, M. Alharbi et al.. Design and fabrication of hollow-core photonic crystal fibers for high-power ultrashort pulse transportation and pulse compression[J]. Opt. Lett., 2012, 37(15): 3111~3113

[35] J. Limpert, T. Schreiber, S. Nolte et al.. All fiber chirped-pulse amplification system based on compression in air-guiding photonic bandgap fiber[J]. Opt. Express, 2003, 11(24): 3332~3337

[36] 刘博文, 王清月, 徐博 等. 基于中空光子带隙光纤的飞秒激光脉冲压缩[J]. 中国激光, 2009, 36(3): 620~624

    Liu Bowen, Wang Qingyue, Xu Bo et al.. Femtosecond pulse compression through hollow-core photonic bandgap fibers[J]. Chinese J. Lasers, 2009, 36(3): 620~624

[37] R. F. Cregan, J. C. Knight, P. St. J. Russell et al.. Distribution of spontaneous emission from an Er3+-doped photonic crystal fiber[J]. J. Lightwave Tech., 1999, 17(11): 2138~2141

[38] W. J. Wadworth, J. C. Knight, W. H. Reeves et al.. Yb3+-doped photonic crystal fibre laser[J]. Electron. Lett., 2000, 36(17): 1452~1454

[39] N. Modsching, P. Kadwani, R. A. Sims et al.. Lasing in thulium-doped polarizing photonic crystal fiber[J]. Opt. Lett., 2011, 36(19): 3873~3875

[40] M. Moenster, P. Was, G. Steinmeyer et al.. Mode-locked Nd-doped microstructure fiber laser[C]. Conference on Lasers and Electro-Optics (CLEO), 2004. CThX4

[41] I. Razdobreev, H. EI. Hamzaoui, L. Bigot et al.. Optical properties of bismuth-doped silica core photonic crystal fiber[J]. Opt. Express, 2010, 18(19): 19479~19484

[42] J. C. Knight. Photonic crystal fibers and fiber lasers (invited)[J]. J. Opt. Soc. Am. B, 2007, 24(8): 1661~1668

[43] 柴路, 胡明列, 栗岩锋 等. 新一代大功率光子晶体光纤飞秒激光器[J]. 激光与光电子学进展, 2009, 46(2): 48~50

    Chai Lu, Hu Minglie, Li Yanfeng et al.. The new generation high-power phonic crystal femtosecond lasers[J]. Laser & Optoelectronics Progress, 2009, 46(2): 48~50

[44] J. Limpert, F. Rser, T. Schreiber et al.. High-power ultrafast fiber laser systems[J]. IEEE J. Sel. Topics Quantum Electron., 2006, 12(2): 233~244

[45] K. Furusawa, T. M. Monro, P. Petropoulos et al.. Modelocked laser based on ytterbium doped holey fibre[J]. Electron. Lett., 2001, 37(9): 560~561

[46] M. Moenster, P. Glas, G. Steinmeyer et al.. Femtosecond neodymium-doped microstructure fiber laser[J]. Opt. Express, 2005, 13(21): 8671~8677

[47] M. Moenster, P. Glas, R. Iliew et al.. Microstructure fiber soliton laser[J]. IEEE Photon. Tech. Lett., 2006, 18(23): 2502~2504

[48] A. Isomki, O. G. Okhotnikov. Femtosecond soliton mode-locked laser based on ytterbium-doped photonic bandgap fiber[J]. Opt. Express, 2006, 14(20): 9238~9243

[49] C. M. Ouyang, L. Chai, M. L. Hu et al.. Impact of spectral filtering on a weak breathing laser based on AS-Yb-PBGF with large net normal dispersion cavity[J]. Opt. Commun., 2008, 281(23): 5846~5850

[50] C. Lecaplain, L. Rasoloniaina, J. Michaud et al.. Mode-locked all-solid photonic bandgap fiber laser[C]. Advanced Solid-State Photonics (ASSP), 2011. ATuB11

[51] C. Lecaplain, L. Rasoloniaina, O. N. Egorova et al.. Mode-locked all-solid photonic bandgap fiber laser[J]. Appl. Phys. B, 2012, 107(2): 4939~4941

[52] J. H. V. Price, K. Furusawa, T. M. Monro et al.. Tunable, femtosecond pulse source operating in the range 1.06~1.33 mm based on an Yb3+-doped holey fiber amplifie[J]. J. Opt. Soc. Am. B, 2002, 19(6): 1286~1294

[53] W. J. Wadsworth, R. M. Percival, G. Bouwmans et al.. High power air-clad photonic crystal fibre laser[J]. Opt. Express, 2003, 11(1): 48~53

[54] J. Limpert, O. Schmidt, J. Rothhardt et al.. Extended single-mode photonic crystal fiber lasers[J]. Opt. Express, 2006, 14(7): 2715~2720

[55] K. Furusawa, A. Malinowski, J. H. V. Price et al.. Cladding pumped ytterbium-doped fiber laser with holey inner and outer cladding[J]. Opt. Express, 2001, 9(13): 714~720

[56] T. Schreiber, F. Rser, O. Schmidt et al.. Stress-induced single-polarization single-transverse mode photonic crystal fiber with low nonlinearity[J]. Opt. Express, 2005, 13(19): 7621~7630

[57] J. Limpert, T. Schreiber, S. Nolte et al.. High-power air-clad large-mode-area photonic crystal fiber laser[J]. Opt. Express, 2003, 11(7): 818~823

[58] NKT Photonincs[OL]. http://www.nktphotonics.com

[59] J. C. Knight. Photonic crystal fibers and fiber lasers (invited)[J]. J. Opt. Soc. Am. B, 2007, 24(8): 1661~1668

[60] D. J. Richardson, J. Nilsson, W. A. Clarkson. High power fiber lasers: current status and future perspectives (invited)[J]. J. Opt. Soc. Am. B, 2010, 27(11): 63~92

[61] B. Orta, J. Limpert, A. Tünnermann. High-energy femtosecond Yb-doped fiber laser operating in the anomalous dispersion regime[J]. Opt. Lett., 2007, 32(15): 2149~2151

[62] C. Lecaplain, C. Chédot, A. Hideur et al.. High-power all-normal-dispersion femtosecond pulse generation from a Yb-doped large-mode-area microstructure fiber laser[J]. Opt. Lett., 2007, 32(18): 2738~2740

[63] B. Orta, C. Lecaplain, A. Hideur et al.. Passively mode-locked single-polarization microstructure fiber laser[J]. Opt. Express, 2008, 16(3): 2122~2128

[64] C. Lecaplain, B. Orta, A. Hideur. High-energy femtosecond pulses from a dissipative soliton fiber laser[J]. Opt. Lett., 2009, 34(23): 3731~3733

[65] S. Lefranois, K. Kieu, Y. Deng et al.. Scaling of dissipative soliton fiber lasers to megawatt peak powers by use of large-area photonic crystal fiber[J]. Opt. Lett., 2010, 35(10): 1569~1571

[66] M. Baumgartl, B. Orta, C. Lecaplain et al.. Sub-80 fs dissipative soliton large-mode-area fiber laser[J]. Opt. Lett., 2010, 35(13): 2311~2313

[67] 王清月, 胡明列, 宋有建 等. 用大模场光子晶体光纤获得高功率飞秒激光[J]. 中国激光, 2007, 34(12): 1603~1607

    Wang Qingyue, Hu Minglie, Song Youjian et al.. Large-mode-area photonic crystal fiber laser output high average power femtosecond pulses[J]. Chinese J. Lasers, 2007, 34(12): 1603~1607

[68] Y. J. Song, M. L. Hu, C. L. Wang et al.. Environmentally stable, high pulse energy Yb-doped large-mode-area photonic crystal fiber laser operating in the soliton-like regime[J]. IEEE Photon. Tech. Lett., 2008, 20(13): 1088~1090

[69] Y. J. Song, M. L. Hu, C. Zhang et al.. High pulse energy femtosecond large-mode-area photonic crystal fiber laser[J]. Chin. Sci. Bull., 2008, 53(23): 3741~3745

[70] Y. J. Song, M. L. Hu, C. L. Gu et al.. Mode-locked Yb-doped large-mode-area photonic crystal fiber laser operating in the vicinity of zero cavity dispersion[J]. Laser Phys. Lett., 2010, 7(3): 230~235

[71] 张大鹏, 胡明列, 谢辰 等. 基于非线性偏振旋转锁模的高功率光子晶体光纤飞秒激光振荡器[J]. 物理学报, 2012, 61(4): 044206

    Zhang Dapeng, Hu Minglie, Xie Chen et al.. A high power photonic crystal fiber laser oscillator based on nonlinear polarization rotation mode-locking[J]. Acta Physica Sinica, 2012, 61(4): 044206

[72] C. Xie, M. L. Hu, D. P. Zhang et al.. Generation of 25-fs high energy pulses by SPM-induced spectral broadening in a photonic crystal fiber laser system[J]. IEEE Photon. Tech. Lett., 2012, 24(7): 551~553

[73] L. Shah, Z. Liu, I. Hartl et al.. High energy femtosecond Yb cubicon fiber amplifier[J]. Opt. Express, 2005, 13(12): 4717~4722

[74] F. Rser, J. Rothhard, B. Ortac et al.. 131 W 220 fs fiber laser system[J]. Opt. Lett., 2005, 30(20): 2754~2756

[75] F. Rser, D. Schimpf, O. Schmidt et al.. 90 W average power 100 J energy femtosecond fiber chirped-pulse amplification system[J]. Opt. Lett., 2007, 32(15): 2230~2232

[76] T. Eidam, F. Rser, O. Schmidt et al.. 57 W, 27 fs pulses from a fiber laser system using nonlinear compression[J]. Appl. Phys. B, 2008, 92(1): 9~12

[77] T. Eidam, S. Hdrich, F. Rser et al.. A 325-W-average-power fiber CPA system delivering sub-400 fs pulses[J]. IEEE J. Sel. Topics Quantum Electron., 2009, 15(1): 187~190

[78] T. Schreiber, C. K. Nielsen, B. Ortac et al.. Microjoule-level all-polarization-maintaining femtosecond fiber source[J]. Opt. Lett., 2006, 31(5): 574~576

[79] 刘博文, 胡明列, 宋有建 等. 亚百飞秒高功率掺镱大模面积光子晶体光纤飞秒激光放大器的实验研究[J]. 物理学报, 2008, 57(11): 6921~6925

    Liu Bowen, Hu Minglie, Song Youjian et al.. Sub-100 fs high power Yb-doped single polarization large-mode-area photonic crystal fiber laser amplifier[J]. Acta Physica Sinica, 2008, 57(11): 6921~6925

[80] 刘博文, 胡明列, 宋有建 等. 39 fs,16 W全光子晶体光纤飞秒激光系统[J]. 中国激光, 2008, 35(6): 811~814

    Liu Bowen, Hu Minglie, Song Youjian et al.. 39 fs, 16 W all photonic crystal fiber laser system[J]. Chinese J. Lasers, 2008, 35(6): 811~814

[81] 刘博文, 胡明列, 宋有建 等. 微焦耳、百飞秒光子晶体光纤飞秒激光放大器[J]. 中国激光, 2010, 37(9): 2415~2418

    Liu Bowen, Hu Minglie, Song Youjian et al.. Photonic crystal fiber femtosecond laser amplifier with millijoules and 100 fs level output[J]. Chinese J. Lasers, 2010, 37(9): 2415~2418

[82] B. W. Liu, M. L. Hu, X. H. Fang et al.. High-power wavelength-tunable photonic-crystal-fiber-based oscillator-amplifier-frequency shifter femtosecond laser system and its applications for material microprocessing[J]. Laser Phys. Lett., 2009, 6(1): 44~48

[83] C. Xie, B. W. Liu, H. L. Niu et al.. Vector-dispersion compensation and pulse pedestal cancellation in a femtosecond nonlinear amplification fiber laser system[J]. Opt. Lett., 2011, 36(21): 4149~4151

[84] J. Limpert, F. Rser, D. N. Schimpf et al.. High repetition rate gigawatt peak power fiber laser systems: challenges, design, and experiment[J]. IEEE J. Sel. Topics Quantum Electron., 2009, 15(1): 159~169

[85] J. Limpert, N. Deguil-Robin, I. Manek-Hnninger et al.. High-power rod-type photonic crystal fiber laser[J]. Opt. Express, 2005, 13(4): 1055~1058

[86] B. Orta, O. Schmidt, T. Schreiber et al.. High-energy femtosecond Yb-doped dispersion compensation free fiber laser[J]. Opt. Express, 2007, 15(17): 10725~10732

[87] B. Orta, M. Baumgartl, J. Limpert et al.. Approaching microjoule-level pulse energy with mode-locked femtosecond fiber lasers[J]. Opt. Lett., 2009, 34(10): 1585~1587

[88] C. Lecaplain, B. Orta, G. Machinet et al.. High-energy femtosecond photonic crystal fiber laser[J]. Opt. Lett., 2009, 35(19): 3156~3158

[89] F. Rser, T. Eidam, J. Rothhardt et al.. Millijoule pulse energy high repetition rate femtosecond fiber chirped-pulse amplification system[J]. Opt. Lett., 2007, 32(24): 3495~3497

[90] J. Boullet, Y. Zaouter, J. Limpert et al.. High-order harmonic generation at a megahertz-level repetition rate directly driven by an ytterbium-doped-fiber chirped-pulse amplification system[J]. Opt. Lett., 2009, 34(9): 1489~1491

[91] C. J. Saraceno, O. H. Heckl, C. R. E. Baer et al.. Pulse compression of a high-power thin disk laser using rod-type fiber amplifiers[J]. Opt. Express, 2011, 19(2): 1395~1407

[92] Y. Zaouter, D. N. Papadopoulos, M. Hanna et al.. Stretcher-free high energy nonlinear amplification of femtosecond pulses in rod-type fibers[J]. Opt. Lett., 2008, 33(2): 107~109

[93] C. Jauregui, T. Eidam, J. Limpert et al.. Impact of modal interference on the beam quality of high-power fiber amplifiers[J]. Opt. Express, 2011, 19(4): 3258~3271

[94] J. Limpert, F. Stutzki, F. Jansen et al.. Yb-doped large-pitch fibres: effective single-mode operation based on higher-order mode delocalization[J]. Light: Science & Applications, 2012, 1(8):1~5

[95] F. Jansen, F. Stutzki, H. J. Otto et al.. The influence of index-depressions in core-pumped Yb-doped large pitch fibers[J]. Opt. Express, 2010, 18(26): 26834~26842

[96] F. Stutzki, F. Jansen, T. Eidam et al.. High average power large-pitch fiber amplifier with robust single-mode operation[J]. Opt. Lett., 2011, 36(5): 689~691

[97] M. Baumgartl, F. Jansen, F. Stutzki et al.. High average and peak power femtosecond large-pitch photonic-crystal-fiber laser[J]. Opt. Lett., 2011, 36(2): 244~246

[98] M. Baumgartl, C. Lecaplain, A. Hidear et al.. 66 W average power from a micreojoule class sub-100 fs fiber oscillator[J]. Opt. Lett., 2011, 37(10): 1640~1642

[99] T. Eidam, J. Rothhardt, F. Stutzki et al.. Fiber chirped-pulse amplification system emitting 3.8 GW peak power[J]. Opt. Express, 2011, 19(1): 255~260

[100] P. K. Cheo, A. Liu, G. G. King. A high-brightness laser beam from a phase-locked multicore Yb-doped fiber laser array[J]. IEEE Photon. Tech. Lett., 2001, 13(5): 439~441

[101] Y. Hu, P. K. Cheo, G. G. King. Fundamental mode operation of a 19-core phaselocked Yb-doped fiber amplifier[J]. Opt. Express, 2004, 12(25): 6230~6239

[102] P. M. Blanchard, J. G. Burnett, G. R. G. Erry et al.. Two-dimensional bend sensing with a single, multi-core optical fibre[J]. Smart Mater. Struct., 2000, 9(2): 132~140

[103] L. Michaille, C. R. Bennett, D. M. Taylor et al.. Phase locking and supermode selection in multicore photonic crystal fiber lasers with a large doped area[J]. Opt. Lett., 2005, 30(13): 1668~1670

[104] L. Michaille, D. M. Taylor, C. R. Bennett et al.. Characteristics of a Q-switched multicore photonic crystal fiber laser with a very large mode field area[J]. Opt. Lett., 2008, 33(1): 72~74

[105] L. Michaille, C. R. Bennett, D. M. Taylor et al.. Multicore photonic crystal fiber lasers for high power/energy applications[J]. IEEE J. Sel. Topics Quantum Electron., 2009, 15(2): 328~336

[106] C. C. Wang, F. Zhang, R. Geng et al.. Photonic crystal fiber for fundamental mode operation of multicore fiber lasers and amplifiers[J]. Opt. Commun., 2008, 281(21): 5364~5371

[107] A. Mafi, J. V. Moloney. Shaping modes in multicore photonic crystal fibers[J]. IEEE Photon. Tech. Lett., 2005, 17(2): 348~350

[108] X. H. Fang, M. L. Hu, Y. F. Li et al.. Spatially flat in-phase supermode in multicore hybrid photonic crystal fiber[J]. J. Lightwave Tech., 2011, 29(22): 3428~3432

[109] X. H. Fang, M. L. Hu, Y. F. Li et al.. Numerical analysis of mode locking in multi-core photonic crystal fiber[J]. Chinese Sci. Bull., 2010, 55(18): 1864~1869

[110] X. H. Fang, M. L. Hu, C. Xie et al.. High pulse energy mode-locked multicore photonic crystal fiber laser[J]. Opt. Lett., 2011, 36(6): 1005~1007

[111] X. H. Fang, M. L. Hu, B. W. Liu et al.. Generation of 150 MW, 110 fs pulses by phase-locked amplification in multicore photonic crystal fiber[J]. Opt. Lett., 2010, 35(14): 2326~2328

[112] M. L. Hu, X. H. Fang, B. W. Liu et al.. Multicore photonic-crystal-fiber platform for high-power all-fiber ultrashort-pulse sources[J]. J. Modern Optics, 2011, 58(21): 1966~1970

[113] T. Eidam, S. Hanf, E. Seise et al.. Femtosecond fiber CPA system emitting 830 W average output power[J]. Opt. Lett., 2010, 35(2): 94~96

[114] A. Tünnermann, T. Schreiber, J. Limpert. Fiber lasers and amplifiers: an ultrafast performance evolution[J]. Appl. Opt., 2010, 49(25): 71~78

[115] F. Liu, Y. J. Song, Q. R. Xing et al.. Broadband terahertz pulses generated by a compact femtosecond photonic crystal fiber amplifier[J]. IEEE Photon. Tech. Lett., 2010, 22(11): 814~816

[116] H. G. Liu, M. L. Hu, B. W. Liu et al.. Compact high-power multiwavelength photoniccrystal-fiber-based laser source of femtosecond pulses in the infrared-visible-ultraviolet range[J]. J. Opt. Soc. Am. B, 2010, 27(11): 2284~2289

[117] J. Rothhardt, S. Demmler, S. Hdrich et al.. Octave-spanning OPCPA system delivering CEP-stable few-cycle pulses and 22 W of average power at 1 MHz repetition rate[J]. Opt. Express, 2012, 20(10): 10870~10878

柴路, 胡明列, 方晓惠, 刘博文, 宋有建, 栗岩锋, 王清月. 光子晶体光纤飞秒激光技术研究进展[J]. 中国激光, 2013, 40(1): 0101001. Chai Lu, Hu Minglie, Fang Xiaohui, Liu Bowen, Song Youjian, Li Yanfeng, Wang Qingyue. Advances in Femtosecond Laser Technologies with Photonic Crystal Fibers[J]. Chinese Journal of Lasers, 2013, 40(1): 0101001.

本文已被 29 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!