光电工程, 2018, 45 (9): 170573, 网络出版: 2018-10-02  

光纤微流传感技术研究进展

Recent advances in fiber optofluidic sensors
作者单位
电子科技大学光纤传感与通信教育部重点实验室,四川 成都 611731
引用该论文

龚朝阳, 张晨琳, 龚元, 饶云江. 光纤微流传感技术研究进展[J]. 光电工程, 2018, 45(9): 170573.

Gong Chaoyang, Zhang Chenlin, Gong Yuan, Rao Yunjiang. Recent advances in fiber optofluidic sensors[J]. Opto-Electronic Engineering, 2018, 45(9): 170573.

参考文献

[1] Kim S, Streets A M, Lin R R, et al. High-throughput single-molecule optofluidic analysis[J]. Nature Methods, 2011, 8(3): 242–245.

[2] Bykov D S, Schmidt O A, Euser T G, et al. Flying particle sensors in hollow-core photonic crystal fibre[J]. Nature Photonics, 2015, 9: 461–465.

[3] Zhang Y, Lei H X, Li B J. Refractive-index-based sorting of colloidal particles using a subwavelength optical fiber in a static fluid[J]. Applied Physics Express, 2013, 6(7): 072001.

[4] Zhang Y, Liang P B, Liu Z H, et al. A novel temperature sensor based on optical trapping technology[J]. Journal of Lightwave Technology, 2014, 32(7): 1394–1398.

[5] Wang Y, Leck K S, Ta V D, et al. Blue liquid lasers from solution of CdZnS/ZnS ternary alloy quantum dots with quasi-continuous pumping[J]. Advanced Materials, 2015, 27(1): 169–175.

[6] Li Z L, Liu Y G, Yan M, et al. A simplified hollow-core microstructured optical fibre laser with microring resonators and strong radial emission[J]. Applied Physics Letters, 2014, 105(7): 071902.

[7] Zhang N, Liu H, Stolyarov A M, et al. Azimuthally polarized radial emission from a quantum dot fiber laser[J]. ACS Photonics, 2016, 3(12): 2275–2279.

[8] Liu X L, Ding W, Wang Y Y, et al. Characterization of a liquid-filled nodeless anti-resonant fiber for biochemical sensing[J]. Optics Letters, 2017, 42(4): 863–866.

[9] Gu F X, Xie F M, Lin X, et al. Single whispering-gallery mode lasing in polymer bottle microresonators via spatial pump engineering[J]. Light: Science & Applications, 2017, 6: e17061.

[10] Gerosa R M, Sudirman A, de S Menezes L, et al. All-fiber high repetition rate microfluidic dye laser[J]. Optica, 2015, 2(2): 186–193.

[11] Fan X D, White I M. Optofluidic microsystems for chemical and biological analysis[J]. Nature Photonics, 2011, 5(10): 591–597.

[12] Humar M, Yun S H. Intracellular microlasers[J]. Nature Photonics, 2015, 9(9): 572–576.

[13] Fan X D, Yun S K H. The potential of optofluidic biolasers[J]. Nature Methods, 2014, 11: 141–147.

[14] Gong C Y, Gong Y, Oo M K K, et al. Sensitive sulfide ion detection by optofluidic catalytic laser using horseradish peroxidase (HRP) enzyme[J]. Biosensors and Bioelectronics, 2017, 96: 351–357.

[15] Wu J Y, Wang W, Gong C Y, et al. Tuning the strength of intramolecular charge-transfer of triene-based nonlinear optical dyes for electro-optics and optofluidic lasers[J]. Journal of Materials Chemistry C, 2017, 5(30): 7472–7478.

[16] Ton X A, Acha V, Bonomi P, et al. A disposable evanescent wave fiber optic sensor coated with a molecularly imprinted polymer as a selective fluorescence probe[J]. Biosensors and Bioelectronics, 2015, 64: 359–366.

[17] Gong C Y, Gong Y, Chen Q S, et al. Reproducible fiber optofluidic laser for disposable and array applications[J]. Lab on a Chip, 2017, 17(20): 3431–3436.

[18] Mullokandov G, Baccarini A, Ruzo A, et al. High-throughput assessment of microRNA activity and function using microRNA sensor and decoy libraries[J]. Nature Methods, 2012, 9(8): 840–846.

[19] Gong C Y, Gong Y, Zhang W L, et al. Fiber optofluidic microlaser with lateral single mode emission[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(3): 7940047.

[20] Chen Q S, Ritt M, Sivaramakrishnan S, et al. Optofluidic lasers with a single molecular layer of gain[J]. Lab on a Chip, 2014, 14(24): 4590–4595.

[21] Lee W, Chen Q S, Fan X D, et al. Digital DNA detection based on a compact optofluidic laser with ultra-low sample consumption[J]. Lab on A Chip, 2016, 16(24): 4770–4776.

[22] Gong Y, Ye A Y, Wu Y, et al. Graded-index fiber tip optical tweezers: Numerical simulation and trapping experiment[J]. Optics Express, 2013, 21(13): 16181–16190.

[23] Liu Z H, Guo C K, Yang J, et al. Tapered fiber optical tweezers for microscopic particle trapping: Fabrication and application[J]. Optics Express, 2006, 14(25): 12510–12516.

[24] Gong Y, Zhang C L, Liu Q F, et al. Optofluidic tunable manipulation of microparticles by integrating graded-index fiber taper with a microcavity[J]. Optics Express, 2015, 23(3): 3762–3769.

[25] Zhang C L, Gong Y, Liu Q F, et al. Graded-index fiber enabled strain-controllable optofluidic manipulation[J]. IEEE Photonics Technology Letters, 2016, 28(3): 256–259.

[26] Gong Y, Huang W, Liu Q F, et al. Graded-index optical fiber tweezers with long manipulation length[J]. Optics Express, 2014, 22(21): 25267–25276.

[27] Gong Y, Liu Q F, Zhang C L, et al. Microfluidic flow rate detection with a large dynamic range by optical manipulation[J]. IEEE Photonics Technology Letters, 2015, 27(23): 2508–2511.

[28] Gong Y, Qiu L M, Zhang C L, et al. Dual-mode fiber optofluidic flowmeter with a large dynamic range[J]. Journal of Lightwave Technology, 2017, 35(11): 2156–2160.

[29] Gong Y, Zhang M L, Gong C Y, et al. Sensitive optofluidic flow rate sensor based on laser heating and microring resonator[J]. Microfluidics and Nanofluidics, 2015, 19(6): 1497–1505.

[30] Zhang C L, Gong Y, Zou W L, et al. Microbubble-based fiber optofluidic interferometer for sensing[J]. Journal of Lightwave Technology, 2017, 35(13): 2514–2519.

[31] Zhang C L, Gong Y, Wu Y, et al. Lab-on-tip based on photothermal microbubble generation for concentration detection[J]. Sensors and Actuators B: Chemical, 2018, 255: 2504–2509.

龚朝阳, 张晨琳, 龚元, 饶云江. 光纤微流传感技术研究进展[J]. 光电工程, 2018, 45(9): 170573. Gong Chaoyang, Zhang Chenlin, Gong Yuan, Rao Yunjiang. Recent advances in fiber optofluidic sensors[J]. Opto-Electronic Engineering, 2018, 45(9): 170573.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!