Photonics Research, 2018, 6 (2): 02000132, Published Online: Jul. 10, 2018   

Sharp tunable and additional noise-free optical filter based on Brillouin losses Download: 712次

Author Affiliations
Institut für Hochfrequenztechnik, Technische Universität Braunschweig, 38106 Braunschweig, Germany
Copy Citation Text

Cheng Feng, Stefan Preussler, Thomas Schneider. Sharp tunable and additional noise-free optical filter based on Brillouin losses[J]. Photonics Research, 2018, 6(2): 02000132.

References

[1] J. Capmany, B. Ortega, D. Pastor. A tutorial on microwave photonic filters. J. Lightwave Technol., 2006, 24: 201-229.

[2] D. Sadot, E. Boimovich. Tunable optical filters for dense WDM networks. IEEE Commun. Mag., 1998, 36: 50-55.

[3] J. Capmany, B. Ortega, D. Pastor, S. Sales. Discrete-time optical processing of microwave signals. J. Lightwave Technol., 2005, 23: 702-723.

[4] N. Gat. Imaging spectroscopy using tunable filters: a review. Proc. SPIE, 2000, 4056: 50-64.

[5] S. Preussler, A. Wiatrek, K. Jamshidi, T. Schneider. Brillouin scattering gain bandwidth reduction down to 3.4  MHz. Opt. Express, 2011, 19: 8565-8570.

[6] S. Preussler, T. Schneider. Stimulated Brillouin scattering gain bandwidth reduction and applications in microwave photonics and optical signal processing. Opt. Eng., 2016, 55: 031110.

[7] A. Wiatrek, S. Preussler, K. Jamshidi, T. Schneider. Frequency domain aperture for the gain bandwidth reduction of stimulated Brillouin scattering. Opt. Lett., 2012, 37: 930-932.

[8] W. Zhang, R. A. Minasian. Ultrawide tunable microwave photonic notch filter based on stimulated Brillouin scattering. IEEE Photon. Technol. Lett., 2012, 24: 1182-1184.

[9] W. Zhang, R. A. Minasian. Widely tunable single-passband microwave photonic filter based on stimulated Brillouin scattering. IEEE Photon. Technol. Lett., 2011, 23: 1775-1777.

[10] R. Tao, X. Feng, Y. Cao, Z. Li, B. Guan. Widely tunable single bandpass microwave photonic filter based on phase modulation and stimulated Brillouin scattering. IEEE Photon. Technol. Lett., 2012, 24: 1097-1099.

[11] ZhuZ.DawesA. M.GauthierD. J.ZhangL.WillnerA. E., “12-GHz-bandwidth SBS slow light in optical fibers,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2006), paper PDP1.

[12] A. Zadok, A. Eyal, M. Tur. Gigahertz-wide optically reconfigurable filters using stimulated Brillouin scattering. J. Lightwave Technol., 2007, 25: 2168-2174.

[13] T. Tanemura, Y. Takushima, K. Kikuchi. Narrowband optical filter, with a variable transmission spectrum, using stimulated Brillouin scattering in optical fiber. Opt. Lett., 2002, 27: 1552-1554.

[14] W. Wei, L. Yi, Y. Jaouën, W. Hu. Bandwidth-tunable narrowband rectangular optical filter based on stimulated Brillouin scattering in optical fiber. Opt. Express, 2014, 22: 23249-23260.

[15] L. Yi, W. Wei, Y. Jaouën, M. Shi, B. Han, M. Morvan, W. Hu. Polarization-independent rectangular microwave photonic filter based on stimulated Brillouin scattering. J. Lightwave Technol., 2016, 34: 669-675.

[16] A. Wise, M. Tur, A. Zadok. Sharp tunable optical filters based on the polarization attributes of stimulated Brillouin scattering. Opt. Express, 2011, 19: 21945-21955.

[17] Y. Stern, K. Zhong, T. Schneider, R. Zhang, Y. Ben-Ezra, M. Tur, A. Zadok. Tunable sharp and highly selective microwave-photonic band-pass filters based on stimulated Brillouin scattering. Photon. Res., 2014, 2: B18-B25.

[18] W. Wei, L. Yi, Y. Jaouën, M. Morvan, W. Hu. Brillouin rectangular optical filter with improved selectivity and noise performance. IEEE Photon. Technol. Lett., 2015, 27: 1593-1596.

[19] C. Xing, C. Ke, K. Zhang, Z. Guo, Y. Zhong, D. Liu. Polarization- and wavelength-independent SBS-based filters for high resolution optical spectrum measurement. Opt. Express, 2017, 25: 20969-20982.

[20] W. Wei, L. Yi, Y. Jaouën, W. Hu. Arbitrary-shaped Brillouin microwave photonic filter by manipulating a directly modulated pump. Opt. Lett., 2017, 42: 4083-4086.

[21] M. F. Ferreira, J. F. Rocha, J. L. Pinto. Analysis of the gain and noise characteristics of fibre Brillouin amplifiers. Opt. Quantum Electron., 1994, 26: 35-44.

[22] M. Choi, I. C. Mayorga, S. Preussler, T. Schneider. Investigation of gain dependent relative intensity noise in fiber Brillouin amplification. J. Lightwave Technol., 2016, 34: 3930-3936.

[23] A. Zadok, E. Zilka, A. Eyal, L. Thévenaz, M. Tur. Vector analysis of stimulated Brillouin scattering amplification in standard single-mode fibers. Opt. Express, 2008, 16: 21692-21707.

[24] A. Kobyakov, M. Sauer, D. Chowdhury. Stimulated Brillouin scattering in optical fibers. Adv. Opt. Photon., 2010, 2: 1-59.

[25] W. Wei, L. Yi, Y. Jaouën, M. Morvan, W. Hu. Ultra-selective flexible add and drop multiplexer using rectangular optical filters based on stimulated Brillouin scattering. Opt. Express, 2015, 23: 19010-19021.

[26] M. A. Soto, M. Alem, M. Amin Shoaie, A. Vedadi, C.-S. Brès, L. Thévenaz, T. Schneider. Optical sinc-shaped Nyquist pulses of exceptional quality. Nat. Commun., 2013, 4: 2898.

[27] R. S. Tucker. High-speed modulation of semiconductor lasers. J. Lightwave Technol., 1985, 3: 1180-1192.

[28] K. Y. Song, K. Hotate. 25  GHz bandwidth Brillouin slow light in optical fibers. Opt. Lett., 2007, 32: 217-219.

[29] ChoudharyA.LiuY.MorrisonB.AryanfarI.MarpaungD.EggletonB. J.VuK.ChoiD. Y.MaP.MaddenS., “On-chip EIT-like RF photonic signal processor,” in IEEE International Topical Meeting on Microwave Photonics (MWP) (2016), pp. 317320.

[30] E. A. Kittlaus, N. T. Otterstrom, P. T. Rakich. On-chip inter-modal Brillouin scattering. Nat. Commun., 2017, 8: 15819.

[31] E. A. Kittlaus, H. Shin, P. T. Rakich. Large Brillouin amplification in silicon. Nat. Photonics, 2016, 10: 463-467.

[32] R. Pant, C. G. Poulton, D. Choi, H. Mcfarlane, S. Hile, E. Li, L. Thévenaz, B. Luther-Davies, S. J. Madden, B. J. Eggleton. On-chip stimulated Brillouin scattering. Opt. Express, 2011, 19: 8285-8290.

Cheng Feng, Stefan Preussler, Thomas Schneider. Sharp tunable and additional noise-free optical filter based on Brillouin losses[J]. Photonics Research, 2018, 6(2): 02000132.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!