Photonics Research, 2020, 8 (3): 03000414, Published Online: Feb. 28, 2020   

High-efficiency and high-power single-frequency fiber laser at 1.6 μm based on cascaded energy-transfer pumping Download: 892次

Author Affiliations
1 School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, China
2 State Key Laboratory of Luminescent Materials and Devices and Institute of Optical Communication Materials, South China University of Technology, Guangzhou 510640, China
3 Guangdong Engineering Technology Research and Development Center of High-performance Fiber Laser Techniques and Equipment, Zhuhai 519031, China
4 Hengqin Firay Sci-Tech Company Ltd., Zhuhai 519031, China
5 Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, Guangzhou 510640, China
6 Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, South China University of Technology, Guangzhou 510640, China
7 e-mail: pengfeima_scut@163.com
Copy Citation Text

Xianchao Guan, Qilai Zhao, Wei Lin, Tianyi Tan, Changsheng Yang, Pengfei Ma, Zhongmin Yang, Shanhui Xu. High-efficiency and high-power single-frequency fiber laser at 1.6 μm based on cascaded energy-transfer pumping[J]. Photonics Research, 2020, 8(3): 03000414.

References

[1] N. W.-H. Chang, D. J. Hosken, J. Munch, D. Ottaway, P. J. Veitch. Stable, single frequency Er:YAG lasers at 1.6  μm. IEEE J. Quantum Electron., 2010, 46: 1039-1042.

[2] D. Y. Shen, J. K. Sahu, W. A. Clarkson. Highly efficient in-band pumped Er:YAG laser with 60  W of output at 1645  nm. Opt. Lett., 2006, 31: 754-756.

[3] R. C. Stoneman, R. Hartman, A. I. R. Malm, P. Gatt. Coherent laser radar using eyesafe YAG laser transmitters. Proc. SPIE, 2005, 5791: 167-174.

[4] E. Fujita, Y. Mashiko, S. Asaya, M. Musha, M. Tokirakawa. High power narrow-linewidth linearly-polarized 1610  nm Er:Yb all-fiber MOPA. Opt. Express, 2016, 24: 26255-26260.

[5] X. Guan, C. Yang, T. Qiao, W. Lin, Q. Zhao, G. Tang, G. Qian, Q. Qian, Z. Yang, S. Xu. High-efficiency sub-watt in-band-pumped single-frequency DBR Tm3+-doped germanate fiber laser at 1950  nm. Opt. Express, 2018, 26: 6817-6825.

[6] R. C. Stoneman, R. Hartman, E. A. Schneider, C. G. Garvin, S. W. Henderson. Eyesafe diffraction-limited single-frequency 1-ns pulsewidth Er:YAG laser transmitter. Proc. SPIE, 2007, 6552: 65520H.

[7] X. Yu, B. Yao, Y. Deng, X. Duan, Y. Ju, Y. Wang. A room temperature diode-pumped single frequency Er:YAG laser at 1645  nm. Laser Phys., 2013, 23: 095803.

[8] L. Zhu, C. Gao, R. Wang, Y. Zheng, M. Gao. Fiber-bulk hybrid Er:YAG laser with 1617  nm single frequency laser output. Laser Phys. Lett., 2012, 9: 674-677.

[9] C. Gao, L. Zhu, R. Wang, M. Gao, Y. Zheng, L. Wang. 6.1  W single frequency laser output at 1645 nm from a resonantly pumped Er:YAG nonplanar ring oscillator. Opt. Lett., 2012, 37: 1859-1861.

[10] Q. Ye, C. Gao, S. Wang, Q. Na, Y. Shi, Q. Wang, M. Gao, J. Zhang. Single-frequency, inject-seeded Q-switched operation of resonantly pumped Er:YAG ceramic laser at 1645  nm. Appl. Phys. B, 2016, 122: 198.

[11] Y. Zheng, C. Gao, R. Wang, M. Gao, Q. Ye. Single frequency 1645  nm Er:YAG nonplanar ring oscillator resonantly pumped by a 1470  nm laser diode. Opt. Lett., 2013, 38: 784-786.

[12] M. A. Solodyankin, E. D. Obraztsova, A. S. Lobach, A. I. Chernov, A. V. Tausenev, V. I. Konov, E. M. Dianov. Mode-locked 1.93  μm thulium fiber laser with a carbon nanotube absorber. Opt. Lett., 2008, 33: 1336-1338.

[13] C. Yang, X. Guan, W. Lin, Q. Zhao, G. Tang, J. Gan, Q. Qian, Z. Feng, Z. Yang, S. Xu. Efficient 1.6  μm linearly-polarized single-frequency phosphate glass fiber laser. Opt. Express, 2017, 25: 29078-29085.

[14] C. Yang, X. Guan, Q. Zhao, W. Lin, C. Li, J. Gan, Q. Qian, Z. Feng, Z. Yang, S. Xu. 15  W high OSNR kHz-linewidth linearly-polarized all-fiber single-frequency MOPA at 1.6  μm. Opt. Express, 2018, 26: 12863-12869.

[15] XuS.YangZ.FengZ.ZhangQ.JiangZ.XuW., “Gain and noise characteristics of single-mode Er3+/Yb3+ co-doped phosphate glass fibers,” in 2nd IEEE International Nanoelectronics Conference (INEC) (2008), pp. 633635.

[16] G. Tang, Z. Fang, Q. Qian, G. Qian, W. Liu, Z. Shi, X. Shan, D. Chen, Z. Yang. Silicate-clad highly Er3+/Yb3+ co-doped phosphate core multimaterial fibers. J. Non-Cryst. Solids, 2016, 452: 82-86.

[17] C. Yang, X. Guan, Q. Zhao, B. Wu, Z. Feng, J. Gan, H. Cheng, M. Peng, Z. Yang, S. Xu. High-power and near-shot-noise-limited intensity noise all-fiber single-frequency 1.5  μm MOPA laser. Opt. Express, 2017, 25: 13324-13331.

[18] L. Huang, H. Wu, R. Li, L. Li, P. Ma, X. Wang, J. Leng, P. Zhou. 414  W near-diffraction-limited all-fiberized single-frequency polarization-maintained fiber amplifier. Opt. Lett., 2017, 42: 1-4.

[19] D. Machewirth, V. Khitrov, U. Manyam, K. Tankala, A. Carter, J. Abramczyk, J. Farroni, D. Guertin, N. Jacobson. Large-mode-area double-clad fibers for pulsed and CW lasers and amplifiers. Proc. SPIE, 2004, 5335: 140-150.

[20] C. A. Codemard, J. K. Sahu, J. Nilsson. Tandem cladding-pumping for control of excess gain in ytterbium-doped fiber amplifiers. IEEE J. Quantum Electron., 2010, 46: 1860-1869.

[21] S. Xu, Z. Yang, Z. Feng, Q. Zhang, Z. Jiang, W. Xu. Efficient fiber amplifiers based on a highly Er3+/Yb3+ codoped phosphate glass-fiber. Chin. Phys. Lett., 2009, 26: 047806.

[22] T. Liu, Z. M. Yang, S. Xu. 3-dimensional heat analysis in short-length Er3+/Yb3+ co-doped phosphate fiber laser with upconversion. Opt. Express, 2009, 17: 235-247.

[23] K. Li, H. Deng, P. Ma, W. Lin, H. Cheng, X. Guan, C. Yang, Q. Zhao, Y. Zhang, Z. Yang, S. Xu. Polarization-maintaining single-frequency fiber laser with quadruple wavelengths at the C-band. IEEE Photon. J., 2018, 10: 1-10.

[24] M. Karásek. The design of L-band EDFA for multiwavelength applications. J. Opt. A, 2001, 3: 96-102.

[25] C. Barnard, P. Myslinski, J. Chrostowski, M. Kavehrad. Analytical model for rare-earth-doped fiber amplifiers and lasers. IEEE J. Quantum Electron., 1994, 30: 1817-1830.

[26] Q. Wang, N. K. Dutta. Er-Yb doped double clad fiber amplifier. Proc. SPIE, 2003, 5246: 208-215.

[27] K. Shiraki, M. Ohashi, M. Tateda. Performance of strain-free stimulated Brillouin scattering suppression fiber. J. Lightwave Technol., 1996, 14: 549-554.

[28] I. Dajani, C. Zeringue, C. Lu, C. Verigen, L. Henry, C. Robin. Stimulated Brillouin scattering suppression through laser gain competition: scalability to high power. Opt. Lett., 2010, 35: 3114-3116.

[29] Z. Wu, Q. Zhao, C. Yang, K. Zhou, W. Lin, X. Guan, C. Li, T. Tan, Z. Feng, Z. Yang, S. Xu. Simultaneously improving the linewidth and the low-frequency relative intensity noise of a single-frequency fiber laser. Appl. Phys. Express, 2019, 12: 052018.

[30] Q. Zhao, Z. Zhang, B. Wu, T. Tan, C. Yang, J. Gan, H. Cheng, Z. Feng, M. Peng, Z. Yang, S. Xu. Noise-sidebands-free and ultra-low-RIN 1.5  μm single-frequency fiber laser towards coherent optical detection. Photon. Res., 2018, 6: 326-331.

Xianchao Guan, Qilai Zhao, Wei Lin, Tianyi Tan, Changsheng Yang, Pengfei Ma, Zhongmin Yang, Shanhui Xu. High-efficiency and high-power single-frequency fiber laser at 1.6 μm based on cascaded energy-transfer pumping[J]. Photonics Research, 2020, 8(3): 03000414.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!