Advanced Photonics, 2021, 3 (2): 024002, Published Online: Apr. 6, 2021   

Photonic circuits written by femtosecond laser in glass: improved fabrication and recent progress in photonic devices Download: 927次

Author Affiliations
1 Zhejiang University, College of Optical Science and Engineering, State Key Laboratory of Modern Optical Instrumentation, Hangzhou, China
2 Chinese Academy of Sciences, CAS Center for Excellence in Ultra-Intense Laser Science, Shanghai, China
Copy Citation Text

Dezhi Tan, Zhuo Wang, Beibei Xu, Jianrong Qiu. Photonic circuits written by femtosecond laser in glass: improved fabrication and recent progress in photonic devices[J]. Advanced Photonics, 2021, 3(2): 024002.

References

[1] A. W. Elshaari, et al.. Hybrid integrated quantum photonic circuits. Nat. Photonics, 2020, 14(5): 285-298.

[2] M. Gräfe, A. Szameit. Integrated photonic quantum walks. Phys., 2020, 53(7): 073001.

[3] L. Li, et al.. Integrated flexible chalcogenide glass photonic devices. Nat. Photonics, 2014, 8(8): 643-649.

[4] W. Bogaerts, et al.. Programmable photonic circuits. Nature, 2020, 586(7828): 207-216.

[5] K. M. Davis, et al.. Writing waveguides in glass with a femtosecond laser. Opt. Lett., 1996, 21(21): 1729-1731.

[6] E. N. Glezer, et al.. Three-dimensional optical storage inside transparent materials. Opt. Lett., 1996, 21(24): 2023-2035.

[7] D. Z. Wei, et al.. Experimental demonstration of a three-dimensional lithium niobate nonlinear photonic crystal. Nat. Photonics, 2018, 12(10): 596-600.

[8] Z. Wang, D. Z. Tan, J. R. Qiu. Single-shot photon recording for three-dimensional memory with prospects of high capacity. Opt. Lett., 2020, 45(22): 6274-6277.

[9] K. J. Sugioka, Y. Cheng. Ultrafast lasers—reliable tools for advanced materials processing. Light Sci. Appl., 2014, 3(4): e149.

[10] W. J. Yang, P. G. Kazansky, Y. P. Svirko. Non-reciprocal ultrafast laser writing. Nat. Photonics, 2008, 2(2): 99-104.

[11] D. Z. Tan, et al.. Single-pulse-induced ultra-fast spatial clustering of metal in glass: fine tunability and application. Adv. Photonics Res., 2021(2000121).

[12] Y. Hu, et al.. Chiral assemblies of laser-printed micropillars directed by asymmetrical capillary force. Adv. Mater., 2020, 32(31): 2002356.

[13] S. Jiang, et al.. Multifunctional Janus microplates arrays actuated by magnetic fields for water/light switches and bio-inspired assimilatory coloration. Adv. Mater., 2019, 31(15): 1807507.

[14] T. Meany, et al.. Laser written circuits for quantum photonics. Laser Photonics Rev., 2015, 9(4): 363-384.

[15] D. Z. Tan, et al.. Femtosecond laser induced phenomena in transparent solid materials: fundamentals and applications. Prog. Mater. Sci., 2016, 76: 154-228.

[16] K. Miura, et al.. Photowritten optical waveguides in various glasses with ultrashort pulse laser. Appl. Phys. Lett., 1997, 71(23): 3329-3331.

[17] S. M. Eaton, H. Zhang, P. R. Herman. Heat accumulation effects in femtosecond laser written waveguides with variable repetition rate. Opt. Express, 2005, 13(12): 4708-4716.

[18] A. Szameit, S. Nolte. Discrete optics in femtosecond-laser written photonic structures. J. Phys. B At. Mol. Opt. Phys., 2010, 43(16): 163001.

[19] R. G. H. van Uden, et al.. Ultra-high-density spatial division multiplexing with a few-mode multicore fibre. Nat. Photonics, 2014, 8(11): 865-870.

[20] X. Y.Xuet al., “Shining light on quantum transport in fractal networks,” arXiv:2005.13385v1 (2020).

[21] A. Couairona, A. Mysyrowicz. Femtosecond filamentation in transparent media. Phys. Rep., 2007, 441(2-4): 47-189.

[22] Q. Sun, et al.. Effect of spherical aberration on the propagation of a tightly focused femtosecond laser pulse inside fused silica. J. Opt. A Pure Appl. Opt., 2005, 7(11): 655-659.

[23] Y. Cheng, et al.. Control of the cross-sectional shape of a hollow microchannel embedded in photostructurable glass by use of a femtosecond laser. Opt. Lett., 2003, 28(1): 55-57.

[24] N. Bisch, et al.. Adaptive optics aberration correction for deep direct laser written waveguides in the heating regime. Appl. Phys. A, 2019, 125(5): 364.

[25] M. Ams, et al.. Slit beam shaping method for femtosecond laser direct-write fabrication of symmetric waveguides in bulk glasses. Opt. Express, 2005, 13(15): 5676-5681.

[26] V. D. Blanco, et al.. Deep subsurface waveguides with circular cross section produced by femtosecond laser writing. Appl. Phys. Lett., 2007, 91(5): 051104.

[27] D. Liu, et al.. Influence of focusing depth on the microfabrication of waveguides inside silica glass by femtosecond laser direct writing. Appl. Phys. A, 2006, 84(3): 257-260.

[28] S. Gross, M. J. Withford. Ultrafast-laser-inscribed 3D integrated photonics: challenges and emerging applications. Nanophotonics, 2015, 4(3): 332-335.

[29] G. Cerullo, et al.. Femtosecond micromachining of symmetric waveguides at 1.5  μm by astigmatic beam focusing. Opt. Lett., 2002, 27(21): 1938-1940.

[30] F. He, et al.. Fabrication of microfluidic channels with a circular cross section using spatiotemporally focused femtosecond laser pulses. Opt. Lett., 2010, 35(7): 1106-1108.

[31] R. Osellame, et al.. Femtosecond writing of active optical waveguides with astigmatically shaped beams. J. Opt. Soc. Am. B, 2003, 20(7): 1559-1567.

[32] P. R. Varona, et al.. Slit beam shaping technique for femtosecond laser inscription of enhanced plane-by-plane FBGs. J. Lightwave Technol., 2020, 38(16): 4526-4532.

[33] V. D. Michele, et al.. Near-IR- and UV-femtosecond laser waveguide inscription in silica glasses. Opt. Mater. Express, 2019, 9(12): 4624-4633.

[34] M. Royon, et al.. X-ray preconditioning for enhancing refractive index contrast in femtosecond laser photoinscription of embedded waveguides in pure silica. Opt. Mater. Express, 2019, 9(1): 65-74.

[35] K. Mishchik, et al.. Photoinscription domains for ultrafast laser writing of refractive index changes in BK7 borosilicate crown optical glass. Opt. Mater. Express, 2013, 3(1): 67-85.

[36] G. D. Marshall, et al.. Directly written monolithic waveguide laser incorporating a distributed feedback waveguide-Bragg grating. Opt. Lett., 2008, 33(9): 956-958.

[37] D. Marshall, M. Ams, M. J. Withford. Direct laser written waveguide–Bragg gratings in bulk fused silica Graham. Opt. Lett., 2006, 31(18): 2690-2692.

[38] A. R. De la Cruz, et al.. Modeling of astigmatic-elliptical beam shaping during fs-laser waveguide writing including beam truncation and diffraction effects. Appl. Phys. A, 2011, 104(2): 687-693.

[39] Y. Wang, et al.. Quantum topological boundary states in quasi-crystals. Adv. Mater., 2019, 31(49): 1905624.

[40] R. J.Renet al., “Identical quantum sources integrated on a single silica chip,” arXiv:2005.12918 (2020).

[41] J. P. Brub, R. Valle. Femtosecond laser direct inscription of surface skimming waveguides in bulk glass. Opt. Lett., 2016, 41(13): 3074-3077.

[42] J. P. Bérubé, et al.. Femtosecond laser direct inscription of mid-IR transmitting waveguides in BGG glasses. Opt. Mater. Express, 2017, 7(9): 3124-3135.

[43] C. Y. Wang, J. Gao, X. M. Jin. On-chip rotated polarization directional coupler fabricated by femtosecond laser direct writing. Opt. Lett., 2019, 44(1): 102-105.

[44] C. Liu, et al.. On-demand quantum storage of photonic qubits in an on-chip waveguide. Phys. Rev. Lett., 2020, 125(26): 260504.

[45] R. Osellame, et al.. Lasing in femtosecond laser written optical waveguides. Appl. Phys. A, 2008, 93(1): 17-26.

[46] Z. H. Wang, et al.. Interferometric characterization of pulse front tilt of spatiotemporally focused femtosecond laser pulses. Opt. Express, 2014, 22(21): 26328-26337.

[47] B. Sun, et al.. Four-dimensional light shaping: manipulating ultrafast spatiotemporal foci in space and time. Light Sci. Appl., 2018, 7(1): 17117.

[48] A. Patel, et al.. Non-paraxial polarization spatio-temporal coupling in ultrafast laser material processing. Laser Photonics Rev., 2017, 11(3): 1600290.

[49] R. Kammel, et al.. Simultaneous spatial and temporal focusing: a route towards confined nonlinear materials processing. Proc. SPIE, 2016, 9736: 97360T.

[50] P. Wang, et al.. Aberration-insensitive three-dimensional micromachining in glass with spatiotemporally shaped femtosecond laser pulses. Opt. Lett., 2018, 43(15): 3485-3488.

[51] F. He, et al.. Independent control of aspect ratios in the axial and lateral cross sections of a focal spot for three-dimensional femtosecond laser micromachining. New J. Phys., 2011, 13(8): 083014.

[52] E. Block, et al.. Integrated single grating compressor for variable pulse front tilt in simultaneously spatially and temporally focused systems. Opt. Lett., 2014, 39(24): 6915-6918.

[53] J. Squier, et al.. High average power Yb:CaF femtosecond amplifier with integrated simultaneous spatial and temporal focusing for laser material processing. Appl. Phys. A, 2014, 114(1): 209-214.

[54] D. N. Vitek, et al.. Temporally focused femtosecond laser pulses for low numerical aperture micromachining through optically transparent materials. Opt. Express, 2010, 18(17): 18086-18094.

[55] G. Zhu, et al.. Simultaneous spatial and temporal focusing of femtosecond pulses. Opt. Express, 2005, 13(6): 2153-2159.

[56] B. Leshem, et al.. When can temporally focused excitation be axially shifted by dispersion?. Opt. Express, 2014, 22(6): 7087-7098.

[57] R. Kammel, et al.. Enhancing precision in fs-laser material processing by simultaneous spatial and temporal focusing. Light Sci. Appl., 2014, 3(5): e169.

[58] P. S. Salter, et al.. Adaptive slit beam shaping for direct laser written waveguides. Opt. Lett., 2012, 37(4): 470-472.

[59] L. Huang, et al.. Aberration correction for direct laser written waveguides in a transverse geometry. Opt. Express, 2016, 24(10): 10565-10574.

[60] P. S. Salter, et al.. Adaptive optics in laser processing. Light Sci. Appl., 2019, 8(1): 110.

[61] M. Sakakura, et al.. Fabrication of three-dimensional 1×4 splitter waveguides inside a glass substrate with spatially phase modulated laser beam. Opt. Express, 2010, 18(12): 12136-12143.

[62] M. Pospiech, et al.. Single-sweep laser writing of 3D-waveguide devices. Opt. Express, 2010, 18(7): 6994-7001.

[63] C. Mauclair, et al.. Dynamic ultrafast laser spatial tailoring for parallel micromachining of photonic devices in transparent materials. Opt. Express, 2009, 17(5): 3531-3542.

[64] P. S. Salter, M. J. Booth. Dynamic optical methods for direct laser written waveguides. Proc. SPIE, 2013, 8613: 86130A.

[65] Y. Nasu, M. Kohtoku, Y. Hibino. Low-loss waveguides written with a femtosecond laser for flexible interconnection in a planar light-wave circuit. Opt. Lett., 2005, 30(7): 723-725.

[66] R. Keil, et al.. Hybrid waveguide-bulk multi-path interferometer with switchable amplitude and phase. APL Photonics, 2016, 1(8): 081302.

[67] D. Z. Tan, et al.. Fabricating low loss waveguides over a large depth in glass by temperature gradient assisted femtosecond laser writing. Opt. Lett., 2020, 45(14): 3941-3944.

[68] S. Gross, et al.. Three-dimensional ultra-broadband integrated tapered mode multiplexers. Laser Photonics Rev., 2014, 8(5): L81-L85.

[69] R. Mary, D. Choudhury, A. K. Kar. Applications of fiber lasers for the development of compact photonic devices. IEEE J. Sel. Top. Quantum. Electron, 2014, 20(5): 72-84.

[70] M. D. Mackenzie, et al.. GLS and GLSSe ultrafast laser inscribed waveguides for mid-IR supercontinuum generation. Opt. Mater. Express, 2019, 9(2): 643-651.

[71] Z. M. Liu, et al.. Suppression of bend loss in writing of three-dimensional optical waveguides with femtosecond laser pulses. Sci. China-Phys. Mech. Astron., 2018, 61(7): 070322.

[72] R. Heilmann, et al.. Tapering of femtosecond laser-written waveguides. Appl. Opt., 2018, 57(3): 377-381.

[73] N. D. Psaila, et al.. Femtosecond laser inscription of optical waveguides in Bismuth ion doped glass. Opt. Express, 2006, 14(22): 10452-10459.

[74] H. L. Butcher, et al.. Ultrafast laser-inscribed mid-infrared evanescent field directional couplers in GeAsSe chalcogenide glass. OSA Continuum., 2018, 1(1): 221-228.

[75] L. Helen, et al.. Demonstration and characterization of ultrafast laser-inscribed mid-infrared waveguides in chalcogenide glass IG2. Opt. Express, 2018, 26(8): 10930-10943.

[76] G. Demetriou, et al.. Nonlinear refractive index of ultrafast laser inscribed waveguides in gallium lanthanum sulphide. Appl. Opt., 2017, 56(19): 5407-5411.

[77] R. R. Thomson, A. K. Kar, J. Allington-Smith. Ultrafast laser inscription: an enabling technology for astrophotonics. Opt. Express, 2009, 17(3): 1963-1969.

[78] R. R. Thomson, et al.. Ultrafast laser inscription of an integrated photonic lantern. Opt. Express, 2011, 19(6): 5698-5705.

[79] G. Douglass, et al.. Femtosecond laser written arrayed waveguide gratings with integrated photonic lanterns. Opt. Express, 2018, 26(2): 1497-1505.

[80] B. R. M. Norris, et al.. First on-sky demonstration of an integrated-photonic nulling interferometer: the GLINT instrument. Mon. Not. R. Astron. Soc., 2020, 491(3): 4180-4193.

[81] L. A. Fernandes, et al.. Stress induced birefringence tuning in femtosecond laser fabricated waveguides in fused silica. Opt. Express, 2012, 20(22): 24103-24114.

[82] G. Corrielli, et al.. Symmetric polarization-insensitive directional couplers fabricated by femtosecond laser writing. Opt. Express, 2018, 26(12): 15101-15109.

[83] Z. M. Liu, et al.. Fabrication of an optical waveguide-mode-field compressor in glass using a femtosecond laser. Materials, 2018, 11(10): 1926.

[84] M. Sakakura, et al.. Thermal and shock induced modification inside a silica glass by focused femtosecond laser pulse. J. Appl. Phys., 2011, 109(2): 023503.

[85] V. R. Bhardwaj, et al.. Stress in femtosecond-laser-written waveguides in fused silica. Opt. Lett., 2004, 29(12): 1312-1314.

[86] A. Arriola, et al.. Low bend loss waveguides enable compact, efficient 3D photonic chips. Opt. Express, 2013, 21(3): 2978-2986.

[87] O. S. Narayanaswamy. Annealing of glass. Glass Sci. Technol., 1986, 3: 275-318.

[88] H. E. Hagy. Fine annealing of optical glass for low residual stress and refractive index homogeneity. Appl. Opt., 1968, 7(5): 833-835.

[89] N. Ollier, et al.. Relaxation study of pre-densified silica glasses under 2.5 MeV electron irradiation. Sci. Rep., 2019, 9(1): 1227.

[90] J. J. Witcher, et al.. Thermal annealing of femtosecond laser written structures in silica glass. Opt. Mater. Express, 2013, 3(4): 502-510.

[91] B. H. Babu, et al.. Systematic control of optical features in aluminosilicate glass waveguides using direct femtosecond laser writing. Opt. Mater., 2017, 72: 501-507.

[92] P. Dekker, et al.. Annealing dynamics of waveguide Bragg gratings: evidence of femtosecond laser induced colour centres. Opt. Express, 2010, 18(4): 3274-3283.

[93] J. D. Musgraves, K. Richardson, H. Jain. Laser-induced structural modification, its mechanisms, and applications in glassy optical materials. Opt. Mater. Express, 2011, 1(5): 921-935.

[94] X. W. Wang, et al.. Analysis of defects patterned by femtosecond pulses inside KBr and SiO2 glass. Appl. Phys. A, 2016, 122(3): 194.

[95] T. T. Fernandez, et al.. Ion migration assisted inscription of high refractive index contrast waveguides by femtosecond laser pulses in phosphate glass. Opt. Lett., 2013, 38(24): 5248-5251.

[96] T. T. Fernandez, et al.. Revisiting ultrafast laser inscribed waveguide formation in commercial alkali-free borosilicate glasses. Opt. Express, 2020, 28(7): 10153-10164.

[97] P. Moreno-Zarate, et al.. Role of the La/K compositional ratio in the properties of waveguides written by fs-laser induced element redistribution in phosphate-based glasses. Materials, 2020, 13(6): 1275.

[98] T. T. Fernandez, et al.. Bespoke photonic devices using ultrafast laser driven ion migration in glasses. Prog. Mater. Sci., 2018, 94: 68-113.

[99] M. Macias-Montero, et al.. Waveguide tapers fabrication by femtosecond laser induced element redistribution in glass. J. Lightwave Technol., 2020, 38(23): 6578-6583.

[100] L. Bressel, et al.. Femtosecond laser induced density changes in GeO2 and SiO2 glasses: fictive temperature effect. Opt. Mater. Express, 2011, 1(4): 605-613.

[101] J. M. Oliveira, et al.. Waveguides written in silver-doped tellurite glasses. Opt. Mater., 2020, 101: 109767.

[102] N. Riesen, et al.. Femtosecond direct-written integrated mode couplers. Opt. Express, 2014, 22(24): 29855-29861.

[103] Y. Duan, et al.. Time dependent study of femtosecond laser written waveguide lasers in Yb-doped silicate and phosphate glass. Opt. Mater. Express, 2015, 5(2): 416-422.

[104] K. Minoshima, et al.. Fabrication of coupled mode photonic devices in glass by nonlinear femtosecond laser materials processing. Opt. Express, 2002, 10(15): 645-652.

[105] K. Suzuki, et al.. Characterization of symmetric [3×3] directional couplers fabricated by direct writing with a femtosecond laser oscillator. Opt. Express, 2006, 14(6): 2335-2343.

[106] S.Grosset al., “Ultrafast laser-written sub-components for space division multiplexing,” in Opt. Fiber Commun. Conf., OSA, p. W1A.1 (2020).

[107] J. Lapointe, et al.. Making smart phones smarter with photonics. Opt. Express, 2014, 22(13): 15473-15483.

[108] R. Heilmann, et al.. Arbitrary photonic wave plate operations on chip: realizing Hadamard, Pauli-X and rotation gates for polarisation qubits. Sci. Rep., 2015, 4(1): 4118.

[109] L. A. Fernandes, et al.. Femtosecond laser fabrication of birefringent directional couplers as polarisation beam splitters in fused silica. Opt. Express, 2011, 19(13): 11992-11999.

[110] W. J. Yang, et al.. Low loss photonic components in high index bismuth borate glass by femtosecond laser direct writing. Opt. Express, 2008, 16(20): 16215-16226.

[111] I. Pitsios, et al.. Geometrically controlled polarisation processing in femtosecond-laser-written photonic circuits. Sci. Rep., 2017, 7(1): 11342.

[112] G. Corrielli, et al.. Rotated waveplates in integrated waveguide optics. Nat. Commun., 2014, 5(1): 4249.

[113] L. Sansoni, et al.. Polarization entangled state measurement on a chip. Phys. Rev. Lett., 2010, 105(20): 200503.

[114] R. S. Luís, et al.. 1.2  Pb/s throughput transmission using a 160  μm cladding, 4-core, 3-mode fiber. J. Lightwave Technol., 2019, 37(8): 1798-1804.

[115] V. A. Amorim, et al.. Monolithic add–drop multiplexers in fused silica fabricated by femtosecond laser direct writing. J. Lightwave Technol., 2017, 35(17): 3615-3621.

[116] I. V. Dyakonov, et al.. Laser-written polarizing directional coupler with reduced interaction length. Opt. Lett., 2017, 42(20): 4231-4234.

[117] T. Mizuno, et al.. Dense space-division multiplexed transmission systems using multi-core and multi-mode fiber. J. Lightwave Technol., 2016, 34(2): 582-592.

[118] N. Riesen, et al.. Monolithic mode-selective few-mode multicore fiber multiplexers. Sci. Rep., 2017, 7(1): 6971.

[119] B. Guan, et al.. Free-space coherent optical communication with orbital angular, momentum multiplexing/demultiplexing using a hybrid 3D photonic integrated circuit. Opt. Express, 2014, 22(1): 145-156.

[120] G. Djogo, et al.. Femtosecond laser additive and subtractive micro-processing: enabling a high-channel-density silica interposer for multicore fibre to silicon-photonic packaging. Int. J. Extreme. Manuf., 2019, 1(4): 045002.

[121] R. R. Thomson, et al.. Ultrafast-laser inscription of a three dimensional fan-out device for multicore fiber coupling applications. Opt. Express, 2007, 15(18): 11691-11697.

[122] M. Mirshafiei, et al.. Glass interposer for short reach optical connectivity. Opt. Express, 2016, 24(11): 12375-12384.

[123] C. Mikael, et al.. Photonic Floquet topological insulators. Nature, 2013, 496(7444): 196-200.

[124] N. Spagnolo. Experimental validation of photonic boson sampling. Nat. Photonics, 2014, 8(8): 615-620.

[125] L. Lu, J. D. Joannopoulos, M. Soljačić. Topological photonics. Nat. Photonics, 2014, 8(11): 821-829.

[126] M. Kim, Z. Jacob, J. Rho. Recent advances in 2D, 3D and higher-order topological photonics. Light Sci. Appl., 2020, 9(1): 130.

[127] M. C. Rechtsman, et al.. Photonic Floquet topological insulators. Nature, 2013, 496(7444): 196-200.

[128] M. Kremer, et al.. A square-root topological insulator with non-quantized indices realized with photonic Aharonov-Bohm cages. Nat. Commun., 2020, 11(1): 907.

[129] L. J. Maczewsky, et al.. Fermionic time-reversal symmetry in a photonic topological insulator. Nat. Mater., 2020, 19(8): 855-860.

[130] S. Weimann, et al.. Topologically protected bound states in photonic parity–time-symmetric crystals. Nat. Mater., 2017, 16(4): 433-438.

[131] G. G. Pyrialakos, et al.. Symmetry-controlled edge states in the type-II phase of Dirac photonic lattices. Nat. Commun., 2020, 11(1): 2074.

[132] J. Noh, et al.. Observation of photonic topological valley Hall edge states. Phys. Rev. Lett., 2018, 120(6): 063902.

[133] Z. J. Yang, et al.. Photonic Floquet topological insulators in a fractal lattice. Light Sci. Appl., 2020, 9(1): 128.

[134] S. Mukherjee, M. C. Rechtsman. Observation of Floquet solitons in a topological bandgap. Science, 2020, 368(6493): 856-859.

[135] O. Zilberberg, et al.. Photonic topological boundary pumping as a probe of 4D quantum Hall physics. Nature, 2018, 553(7686): 59-62.

[136] J. Noh, et al.. Topological protection of photonic mid-gap defect modes. Nat. Photonics, 2018, 12(7): 408-415.

[137] S. Stützer, et al.. Photonic topological Anderson insulators. Nature, 2018, 560(7719): 461-465.

[138] E. Lustig, et al.. Photonic topological insulator in synthetic dimensions. Nature, 2019, 567(7748): 356-360.

[139] Y. Lumer, et al.. Light guiding by artificial gauge fields. Nat. Photonics, 2019, 13(5): 339-345.

[140] A. E. Hassan, et al.. Corner states of light in photonic waveguides. Nat. Photonics, 2019, 13(10): 697-700.

[141] Y. Wang, et al.. Quantum topological boundary states in quasi-crystals. Adv. Mater., 2019, 31(49): 1905624.

[142] J. W. Wang, et al.. Integrated photonic quantum technologies. Nat. Photonics, 2020, 14(5): 273-284.

[143] D. J. Brod, et al.. Photonic implementation of boson sampling: a review. Adv. Photonics, 2019, 1(3): 034001.

[144] N. Spagnolo, et al.. Three-photon bosonic coalescence in an integrated tritter. Nat. Commun., 2013, 4(1): 1606.

[145] T. Giordani, et al.. Experimental statistical signature of many-body quantum interference. Nat. Photonics, 2018, 12(3): 173-178.

[146] A. Crespi, et al.. Anderson localization of entangled photons in an integrated quantum walk. Nat. Photonics, 2013, 7(4): 322-328.

[147] J. L. Tambasco, et al.. Quantum interference of topological states of light. Sci. Adv., 2018, 4(9): eaat3187.

[148] C. Antón, et al.. Interfacing scalable photonic platforms: solid-state based multi-photon interference in a reconfigurable glass chip. Optica, 2019, 6(12): 1471-1477.

[149] H. Tang, et al.. Experimental quantum fast hitting on hexagonal graphs. Nat. Photonics, 2018, 12(12): 754-758.

[150] X. Y. Xu, et al.. A scalable photonic computer solving the subset sum problem. Sci. Adv., 2020, 6(5): eaay5853.

[151] H. Tang, et al.. Experimental two-dimensional quantum walk on a photonic chip. Sci. Adv., 2018, 4(5): eaat3174.

[152] Z. Y. Shi, et al.. Quantum fast hitting on glued trees mapped on a photonic chip. Optica, 2020, 7(6): 613-618.

[153] Y.Wanget al., “Topologically protected quantum entanglement,” arXiv:1903.03015v1 (2019).

[154] J. Noh, et al.. Experimental observation of optical Weyl points and Fermi arc-like surface states. Nat. Phys., 2017, 13(6): 611-617.

[155] A. Cerjan, et al.. Experimental realization of a Weyl exceptional ring. Nat. Photonics, 2019, 13(9): 623-628.

[156] A. Crespi, et al.. Suppression law of quantum states in a 3D photonic fast Fourier transform chip. Nat. Commun., 2016, 7(1): 10469.

[157] A. Saviauk, et al.. 3D-integrated optics component for astronomical spectro-interferometry. Appl. Opt., 2013, 52(19): 4556-4565.

[158] D. G. MacLachlan, et al.. Development of integrated mode reformatting components for diffraction-limited spectroscopy. Opt. Lett., 2016, 41(1): 76-79.

[159] R. J. Harris, et al.. Photonic spatial reformatting of stellar light for diffraction-limited spectroscopy. Mon. Not. R. Astron. Soc., 2015, 450(1): 428-434.

[160] N. Cvetojevic, et al.. Modal noise in an integrated photonic lantern fed diffraction-limited spectrograph. Opt. Express, 2017, 25(21): 25546-25565.

[161] R. Diener, et al.. Towards 3D-photonic, multi-telescope beam combiners for midinfrared astrointerferometry. Opt. Express, 2017, 25(16): 19262-19274.

[162] T. Gretzinger, et al.. Towards a photonic mid-infrared nulling interferometer in chalcogenide glass. Opt. Express, 2019, 27(6): 8626-8638.

[163] J. Tepper, et al.. Ultrafast laser inscription in ZBLAN integrated optics chips for mid-IR beam combination in astronomical interferometry. Opt. Express, 2017, 25(17): 20642-20653.

[164] A. Arriola, et al.. Mid-infrared astrophotonics: study of ultrafast laser induced index change in compatible materials. Opt. Mater. Express, 2017, 7(3): 698-711.

[165] N. Jovanovic, et al.. Integrated photonic building blocks for next-generation astronomical instrumentation I: the multimode waveguide. Opt. Express, 2012, 20(15): 17029-17043.

[166] J. Tepper, et al.. Integrated optics prototype beam combiner for long baseline interferometry in the L and M bands. Astron. Astrophys., 2017, 602: A66.

[167] N. Psaila. 3D laser direct writing for advanced photonic integration. Proc. SPIE, 2019, 10924: 109240U.

[168] F. Ceccarelli, et al.. Low power reconfigurability and reduced crosstalk in integrated photonic circuits fabricated by femtosecond laser micromachining. Laser Photonics Rev., 2020, 14(10): 2000024.

[169] E. Perez, et al.. Automated on-axis direct laser writing of coupling elements for photonic chips. Opt. Express, 2020, 28(26): 39340-39353.

[170] F. Ceccarelli, et al.. Thermal phase shifters for femtosecond laser written photonic integrated circuits. J. Lightwave Technol., 2019, 37(17): 4275-4281.

[171] Y. Chen, et al.. Mapping twisted light into and out of a photonic chip. Phys. Rev. Lett., 2018, 121(23): 233602.

[172] Y. Chen, et al.. Vector vortex beam emitter embedded in a photonic chip. Phys. Rev. Lett., 2020, 124(15): 153601.

Dezhi Tan, Zhuo Wang, Beibei Xu, Jianrong Qiu. Photonic circuits written by femtosecond laser in glass: improved fabrication and recent progress in photonic devices[J]. Advanced Photonics, 2021, 3(2): 024002.

本文已被 10 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!