Chinese Optics Letters, 2021, 19 (2): 020501, Published Online: Dec. 18, 2020   

Review of Fresnel incoherent correlation holography with linear and non-linear correlations [Invited] Download: 848次

Author Affiliations
1 Optical Sciences Centre and ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Science, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
2 Melbourne Centre for Nanofabrication, ANFF, Clayton, VIC 3168, Australia
3 Tokyo Tech World Research Hub Initiative (WRHI), School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
Copy Citation Text

Vijayakumar Anand, Tomas Katkus, Soon Hock Ng, Saulius Juodkazis. Review of Fresnel incoherent correlation holography with linear and non-linear correlations [Invited][J]. Chinese Optics Letters, 2021, 19(2): 020501.

References

[1] J. Rosen, G. Brooker. Digital spatially incoherent Fresnel holography. Opt. Lett., 2007, 32: 912.

[2] J. Rosen, G. Brooker. Non-scanning motionless fluorescence three-dimensional holographic microscopy. Nat. Photon., 2008, 2: 190.

[3] J. Rosen, A. Vijayakumar, M. Kumar, M. R. Rai, R. Kelner, Y. Kashter, A. Bulbul, S. Mukherjee. Recent advances in self-interference incoherent digital holography. Adv. Opt. Photon., 2019, 11: 1.

[4] J. Hong, M.K. Kim. Overview of techniques applicable to self-interference incoherent digital holography. J. Eur. Opt. Soc. Rapid Publ., 2013, 8: 13077.

[5] Y. Wan, T. Man, F. Wu, M. K. Kim, D. Wang. Parallel phase-shifting self-interference digital holography with faithful reconstruction using compressive sensing. Opt. Lasers Eng., 2016, 86: 38.

[6] PoonT. C.LiuJ. P., Introduction to Modern Digital Holography: With MATLAB (Cambridge University, 2014).

[7] J. Rosen, R. Kelner. Modified Lagrange invariants and their role in determining transverse and axial imaging resolutions of self-interference incoherent holographic systems. Opt. Express, 2014, 22: 29048.

[8] J. Rosen, N. Siegel, G. Brooker. Theoretical and experimental demonstration of resolution beyond the Rayleigh limit by FINCH fluorescence microscopic imaging. Opt. Express, 2011, 19: 26249.

[9] P. Bouchal, J. Kapitán, R. Chmelík, Z. Bouchal. Point spread function and two-point resolution in Fresnel incoherent correlation holography. Opt. Express, 2011, 19: 15603.

[10] X. Lai, S. Zeng, X. Lv, J. Yuan, L. Fu. Violation of the Lagrange invariant in an optical imaging system. Opt. Lett., 2013, 38: 1896.

[11] Y. Kashter, A. Vijayakumar, Y. Miyamoto, J. Rosen. Enhanced super-resolution using Fresnel incoherent correlation holography with structured illumination. Opt. Lett., 2016, 41: 1558.

[12] A. Vijayakumar, Y. Kashter, J. Rosen. Resolving images by blurring - a new superresolution method using a scattering mask between the observed objects and the hologram recorder. Optica, 2017, 4: 932.

[13] T. Tahara, T. Kanno, Y. Arai, T. Ozawa. Single-shot phase-shifting incoherent digital holography. J. Opt., 2017, 19: 065705.

[14] T. Nobukawa, T. Muroi, Y. Katano, N. Kinoshita, N. Ishii. Single-shot phase-shifting incoherent digital holography with multiplexed checkerboard phase gratings. Opt. Lett., 2018, 43: 1698.

[15] X. Quan, O. Matoba, Y. Awatsuji. Single-shot incoherent digital holography using a dual focusing lens with diffraction gratings. Opt. Lett., 2017, 42: 383.

[16] J. Hong, M. K. Kim. Single-shot self-interference incoherent digital holography using off-axis configuration. Opt. Lett., 2013, 38: 5196.

[17] D. Liang, Q. Zhang, J. Liu. Single-shot Fresnel incoherent digital holography based on geometric phase lens. J. Mod. Opt., 2020, 67: 92.

[18] J. Rosen, B. Katz, G. Brooker. Fresnel incoherent correlation hologram-a review. Chin. Opt. Lett., 2009, 7: 1134.

[19] A. Vijayakumar, T. Katkus, S. Lundgaard, D. Linklater, E. P. Ivanova, S. H. Ng, S. Juodkazis. Fresnel incoherent correlation holography with single camera shot. Opto-Electron. Adv., 2020, 3: 200004.

[20] M. R. Rai, A. Vijayakumar, J. Rosen. Non-linear adaptive three-dimensional imaging with interferenceless coded aperture correlation holography (I-COACH). Opt. Express, 2018, 26: 18143.

[21] P. Bouchal, Z. Bouchal. Selective edge enhancement in three-dimensional vortex imaging with incoherent light. Opt. Lett., 2012, 37: 2949.

[22] V. Anand, T. Katkus, S. Juodkazis. Randomly multiplexed diffractive lens and axicon for spatial and spectral imaging. Micromachines, 2020, 11: 437.

[23] N. Davidson, A. A. Friesem, E. Hasman. Holographic axilens: high resolution and long focal depth. Opt. Lett., 1991, 16: 523.

[24] B. S. Padilla, A. Žukauskas, A. Aleksanyan, A. Balčytis, M. Malinauskas, S. Juodkazis, E. Brasselet. Wrinkled axicons: shaping light from cusps. Opt. Express, 2016, 24: 24075.

[25] R. Dharmavarapu, S. Bhattacharya, S. Juodkazis. Diffractive optics for axial intensity shaping of Bessel beams. J. Opt., 2018, 20: 085606.

[26] A. Vijayakumar, C. Rosales-Guzmán, M. R. Rai, J. Rosen, O. V. Minin, I. V. Minin, A. Forbes. Generation of structured light by multilevel orbital angular momentum holograms. Opt. Express, 2019, 27: 6459.

[27] T. Xu, J. He, H. Ren, Z. Zhao, G. Ma, Q. Gong, S. Yang, L. Dong, F. Ma. Edge contrast enhancement of Fresnel incoherent correlation holography (FINCH) microscopy by spatial light modulator aided spiral phase modulation. Opt. Express, 2017, 25: 29207.

[28] D. A. Fish, A. M. Brinicombe, E. R. Pike, J. G. Walker. Blind deconvolution by means of the Richardson–Lucy algorithm. J. Opt. Soc. Am. A, 1995, 12: 58.

[29] S. J. Lathika, V. Anand, S. Bhattacharya. A compact single channel interferometer to study vortex beam propagation through scattering layers. Sci. Rep., 2020, 10: 296.

[30] A. Vijayakumar, J. Rosen. Interferenceless coded aperture correlation holography – a new technique for recording incoherent digital holograms without two-wave interference. Opt. Express, 2017, 25: 13883.

[31] A. Vijayakumar, S. H. Ng, J. Maksimovic, D. Linklater, E. P. Ivanova, T. Katkus, E. P. Ivanova, S. Juodkazis. Single shot multispectral multidimensional imaging using chaotic waves. Sci. Rep., 2020, 10: 13902.

[32] A. Vijayakumar, Y. Kashter, R. Kelner, J. Rosen. Coded aperture correlation holography (COACH) system with improved performance [Invited]. Appl. Opt., 2017, 56: F67.

[33] A. Bulbul, A. Vijayakumar, J. Rosen. Partial aperture imaging by system with annular phase coded masks. Opt. Express, 2017, 25: 33315.

Vijayakumar Anand, Tomas Katkus, Soon Hock Ng, Saulius Juodkazis. Review of Fresnel incoherent correlation holography with linear and non-linear correlations [Invited][J]. Chinese Optics Letters, 2021, 19(2): 020501.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!