Photonics Research, 2018, 6 (11): 11000987, Published Online: Oct. 11, 2018  

Broadband athermal waveguides and resonators for datacom and telecom applications Download: 544次

Author Affiliations
1 Key Laboratory of Opto-electronic Information Technical Science of Ministry of Education, School of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
2 Key Laboratory of Integrated Opto-electronic Technologies and Devices in Tianjin, School of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
3 Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
4 Department of Materials Engineering, University of Tokyo, Tokyo 113-8656, Japan
5 College of Optics and Photonics, CREOL and FPCE, University of Central Florida, Orlando, Florida 32816, USA
Copy Citation Text

Liuqing He, Yuhao Guo, Zhaohong Han, Kazumi Wada, Jurgen Michel, Anuradha M. Agarwal, Lionel C. Kimerling, Guifang Li, Lin Zhang. Broadband athermal waveguides and resonators for datacom and telecom applications[J]. Photonics Research, 2018, 6(11): 11000987.

References

[1] R. A. Soref. The past, present and future of silicon photonics. IEEE J. Sel. Top. Quantum Electron., 2006, 12: 1678-1687.

[2] R. Kirchain, L. Kimerling. A roadmap for nanophotonics. Nat. Photonics, 2007, 1: 303-305.

[3] J. Leuthold, C. Koos, W. Freude. Nonlinear silicon photonics. Nat. Photonics, 2010, 4: 535-544.

[4] R. Soref. Mid-infrared photonics in silicon and germanium. Nat. Photonics, 2010, 4: 495-497.

[5] B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, J.-P. Laine. Microring resonator channel dropping filters. J. Lightwave Technol., 1997, 15: 998-1005.

[6] Q. Xu, D. Fattal, R. G. Beausoleil. Silicon microring resonators with 1.5-μm radius. Opt. Express, 2008, 16: 4309-4315.

[7] 7ChremmosI.SchwelbO.UzunogluN., Photonic Microresonator Research and Applications (Springer, 2010).

[8] K. Padmaraju, J. Chan, L. Chen, M. Lipson, K. Bergman. Thermal stabilization of a microring modulator using feedback control. Opt. Express, 2012, 20: 27999-28008.

[9] B. Guha, B. B. C. Kyotoku, M. Lipson. CMOS-compatible athermal silicon microring resonators. Opt. Express, 2010, 18: 3487-3493.

[10] G. Li, X. Zheng, J. Yao, H. Thacker, I. Shubin, Y. Luo, K. Raj, J. E. Cunningham, A. V. Krishnamoorthy. 25??Gb/s 1V-driving CMOS ring modulator with integrated thermal tuning. Opt. Express, 2011, 19: 20435-20443.

[11] B. Guha, K. Preston, M. Lipson. Athermal silicon microring electro-optic modulator. Opt. Lett., 2012, 37: 2253-2255.

[12] V. Raghunathan, W. N. Ye, J. Hu, T. Izuhara, J. Michel, L. Kimerling. Athermal operation of silicon waveguides: spectral, second order and footprint dependencies. Opt. Express, 2010, 18: 17631-17639.

[13] Y. Kokubun, S. Yoneda, S. Matsuura. Temperature-independent optical filter at 1.55?mum wavelength using a silica-based athermal waveguide. Electron. Lett., 1998, 34: 367-369.

[14] J. M. Lee, D. J. Kim, H. Ahn, S. H. Park, G. Kim. Temperature dependence of silicon nanophotonic ring resonator with a polymeric overlayer. J. Lightwave Technol., 2007, 25: 2236-2243.

[15] W. Ye, J. Michel, L. Kimerling. Athermal high-index-contrast waveguide design. IEEE Photon. Technol. Lett., 2008, 20: 885-887.

[16] L. Zhou, K. Ken, K. Okamoto, R. P. Scott, N. K. Fontaine, D. Ding, V. Akella, S. J. B. Yoo. Towards athermal optically-interconnected computing system using slotted silicon microring resonators and RF-photonic comb generation. Appl. Phys. A, 2009, 95: 1101-1109.

[17] P. Alipour, E. S. Hosseini, A. A. Eftekhar, B. Momeni, A. Adibi. Athermal performance in high-Q polymer-clad silicon microdisk resonators. Opt. Lett., 2010, 35: 3462-3464.

[18] J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, M. Zhao, G. Morthier, R. Baets. Athermal silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides. Opt. Express, 2009, 17: 14627-14633.

[19] F. Qiu, A. M. Spring, H. Miura, D. Maeda, M. Ozawa, K. Odoi, S. Yokoyama. Athermal hybrid silicon/polymer ring resonator electro-optic modulator. ACS Photon., 2016, 3: 780-783.

[20] 20BovingtonJ. T., “Athermal laser designs on Si and heterogeneous III-V/Si3N4 integration,” Dissertations & Theses (Gradworks, 2014).

[21] B. Guha, J. Cardenas, M. Lipson. Athermal silicon microring resonators with titanium oxide cladding. Opt. Express, 2013, 21: 26557-26563.

[22] F. Qiu, A. M. Spring, F. Yu, S. Yokoyama. Complementary metal oxide semiconductor compatible athermal silicon nitride/titanium dioxide hybrid micro-ring resonators. Appl. Phys. Lett., 2013, 102: 051106.

[23] F. Qiu, A. M. Spring, S. Yokoyama. Athermal and high-Q hybrid TiO2–Si3N4 ring resonator via an etching-free fabrication technique. ACS Photon., 2015, 2: 405-409.

[24] S. S. Djordjevic, K. Shang, B. Guan, S. T. S. Cheung, L. Liao, J. Basak, H.-F. Liu, S. J. B. Yoo. CMOS-compatible, athermal silicon ring modulators clad with titanium dioxide. Opt. Express, 2013, 21: 13958-13968.

[25] H. Hirota, M. Itoh, M. Oguma, Y. Hibino. Athermal arrayed-waveguide grating multi/demultiplexers composed of TiO2-SiO2 waveguides on Si. IEEE Photon. Technol. Lett., 2005, 17: 375-377.

[26] T. Lipka, L. Moldenhauer, J. Müller, H. K. Trieu. Athermal and wavelength-trimmable photonic filters based on TiO2-cladded amorphous-SOI. Opt. Express, 2015, 23: 20075-20088.

[27] J. Bovington, S. Srinivasan, J. E. Bowers. Athermal laser design. Opt. Express, 2014, 22: 19357-19364.

[28] A. Arbabi, L. L. Goddard. Measurements of the refractive indices and thermo-optic coefficients of Si3N4 and SiOx using microring resonances. Opt. Lett., 2013, 38: 3878-3881.

[29] I. E. Zadeh, A. W. Elshaari, K. D. Jöns, A. Fognini, D. Dalacu, P. J. Poole, M. E. Reimer, V. Zwiller. Thermo-optic characterization of silicon nitride resonators for cryogenic photonic circuits. IEEE Photon. J., 2016, 8: 2701009.

[30] G. Cocorullo, F. G. Della Corte, I. Rendina. Temperature dependence of the thermo-optic coefficient in crystalline silicon between room temperature and 550??K at the wavelength of 1523??nm. Appl. Phys. Lett., 1999, 74: 3338-3340.

[31] A. C. Hryciw, R. D. Kekatpure, S. Yerci, L. Dal Negro, M. L. Brongersma. Thermo-optic tuning of erbium-doped amorphous silicon nitride microdisk resonators. Appl. Phys. Lett., 2011, 98: 041102.

Liuqing He, Yuhao Guo, Zhaohong Han, Kazumi Wada, Jurgen Michel, Anuradha M. Agarwal, Lionel C. Kimerling, Guifang Li, Lin Zhang. Broadband athermal waveguides and resonators for datacom and telecom applications[J]. Photonics Research, 2018, 6(11): 11000987.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!