光子学报, 2016, 45 (10): 1024001, 网络出版: 2016-11-14  

基于SPASER机制的偏心金壳纳米天线的多波长散射特性

Multi-wavelength Scattering Characteristics of a SPASER-based Off-centre Gold Shell Nanoantenna
作者单位
1 宁波大学 理学院,浙江 宁波 315211
2 南通大学 理学院,江苏 南通 226007
3 长春理工大学 光电子工程学院, 长春 130022
引用该论文

王勉, 张昊鹏, 许田, 周见红, 周骏. 基于SPASER机制的偏心金壳纳米天线的多波长散射特性[J]. 光子学报, 2016, 45(10): 1024001.

WANG Mian, ZHANG Hao-peng, XU Tian, ZHOU Jian-hong, ZHOU Jun. Multi-wavelength Scattering Characteristics of a SPASER-based Off-centre Gold Shell Nanoantenna[J]. ACTA PHOTONICA SINICA, 2016, 45(10): 1024001.

参考文献

[1] PRODAN E, RADLOFF C, HALAS N J, et al. A hybridization model for the plasmon response of complex nanostructures[J].Science, 2003, 302(5644): 419-422.

[2] KING N S, Li Y, AYALA-OROZCO C, et al. Angle and spectral-dependent light scattering from plasmonic nanocups[J]. ACS Nano, 2011, 5(9): 7254-7262.

[3] KINIGHT M W, HALAS N J. Nanoshells to nanoeggs to nanocups: optical properties of reduced symmetry core–shell nanoparticles beyond the quasistatic limit[J]. New Journal of Physics, 2008, 10(10): 105006.

[4] MING Tian, ZHAO Lei, YANG Zhi, et al. Strong polarization dependence of plasmon-enhanced fluorescence on single gold nanorods[J]. Nano Letters, 2009, 9(11): 3896-3903.

[5] WU D J, LIU X J. Optimization of silica-silver-gold layered nanoshell for large near-field enhancement[J]. Applied Physics Letters, 2010, 96: 151912.

[6] ZHANG Li, ZHOU Jun, JIANG Tao. Gain-assisted U-shaped Au nanostructure for ultrahigh sensitivity single molecule detection by surface-enhanced Raman scattering[J]. Journal of Optics, 2015, 17: 125003.

[7] YUAN Yu-yang, YUAN Zong-heng, LI Xiao-nan, et al. Absorption enhancement and sensing properties of Ag diamond nanoantenna arrays[J]. Chinese Physics B, 2015, 7(24): 074206.

[8] DENG Hu, CHEN Qi, HE Xiao-yang, et al. Power combining technology in three-way Terahertz photoconductive antenna[J]. Chinese Journal of Luminescence, 2014, 35(12): 1500-1505.

[9] LIU Sen-bo, FU Hao, LI Xiao-long, et al. Characteristics of polymer waveguide sensor based on local surface plasmon resonace[J]. Chinese Journal of Luminescence, 2016, 37(1): 112-116.

[10] MIGUEL N C, MAIER S A. Broad-band near-infrared plasmonic nanoantennas for higher harmonic generation[J]. ACS Nano, 2012, 6(4): 3537-3544.

[11] DEVILEZ A, BRIAN S, NICOLAS B. Compact metallo-dielectric optical antenna for ultra directional and enhanced radiative emission[J]. ACS Nano, 2010, 4(6): 3390-3396.

[12] HATAL N A, HUSUEH C H, GADDIS A L, et al. Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy[J]. Nano Letters, 2010, 10(12): 4952-4955.

[13] PAKIZEH T, MIKAEL K. Unidirectional ultracompact optical nanoantennas[J]. Nano Letters, 2009, 9(6): 2343-2349.

[14] AOUANI H, MAHBOUB O, DEVAUX E, et al. Plasmonic antennas for directional sorting of fluorescence emission[J]. Nano Letters, 2011, 11(6): 2400-2406.

[15] HU Ying, NOELCK S J, DREZEK R A. Symmetry breaking in gold-silica-gold multilayer nanoshells[J]. ACS Nano, 2010, 4(3): 1521-1528.

[16] MUKHERJEE S, SOBHANI H, LASSITER J B, et al. Fanoshells: nanoparticles with built-in Fano resonances[J]. Nano Letters, 2010, 10(7): 2694-2701.

[17] BERGMAN D J, STOCKAMN M I. Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems[J]. Physical Review Letters, 2003, 90: 027402.

[18] GORDON J A, ZIOLKOWSKI R W. The design and simulated performance of a coated nano-particle laser[J]. Optics Express, 2007, 15(5): 2622-2653.

[19] LI Zhi-yuan, XIA You-nan, et al. Metal nanoparticles with gain toward single-molecule detection by surface-enhanced Raman scattering[J]. Nano Letters, 2010, 10(1): 243-249.

[20] LIU Si-yun, LI Jia-fang, ZHOU Fei, et al. Efficient surface plasmon amplification from gain-assisted gold nanorods[J]. Optics Letters, 2011, 36(7): 1296-1298.

[21] ZHANG Hao-peng, ZHOU Jun, ZOU Wei-bo, et al. Surface plasmon amplification characteristics of an active three-layer nanoshell-based SPASER[J]. Journal of Applied Physics, 2012, 112: 074309.

[22] DING Pei, HE Jin-na, Wang Jun-qiao, et al. Low-threshold surface plasmon amplification from a gain-assisted core–shell nanoparticle with broken symmetry[J]. Journal of Optics, 2013, 15: 105001

[23] JOHNSON P B, CHRISTY R W. Optical constants of the noble metals[J]. Physical Review B, 1972, 6(12): 4370.

[24] FANG Yu-rui, LI Zhi-peng, HUANG Ying-zhou, et al. Branched silver nanowires as controllable plasmon routers[J]. Nano Letters, 2010, 10(5): 1950-1954.

[25] HARADA Y, ASAKURA T. Radiation forces on a dielectric sphere in the Rayleigh scattering regime[J]. Optics Communications, 1996, 124(5): 529-541.

[26] AOUANI H, RAHMANI M, POV H, et al. Plasmonic nanoantennas for multispectral surface-enhanced spectroscopies[J]. Physical Chemistry C, 2013, 117(36): 18620-18626.

[27] PELTON M, BRYANT G W. Introduction to metal-nanoparticle plasmonics[M]. John Wiley & Sons, 2013.

[28] PELLEGRINI G, MATTEI G, MAZZOLDI P. Light extraction with dielectric nanoantenna arrays[J]. ACS Nano, 2009, 3(9): 2715-2721.

王勉, 张昊鹏, 许田, 周见红, 周骏. 基于SPASER机制的偏心金壳纳米天线的多波长散射特性[J]. 光子学报, 2016, 45(10): 1024001. WANG Mian, ZHANG Hao-peng, XU Tian, ZHOU Jian-hong, ZHOU Jun. Multi-wavelength Scattering Characteristics of a SPASER-based Off-centre Gold Shell Nanoantenna[J]. ACTA PHOTONICA SINICA, 2016, 45(10): 1024001.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!