中国激光, 2019, 46 (5): 0508011, 网络出版: 2019-11-11   

可见波段超快脉冲激光研究进展 下载: 1446次

Research Progress of Ultrafast Pulsed Lasers in Visible Range
作者单位
山东大学晶体材料研究所晶体材料国家重点实验室, 山东 济南 250100
引用该论文

张玉霞, 于浩海, 张怀金. 可见波段超快脉冲激光研究进展[J]. 中国激光, 2019, 46(5): 0508011.

Yuxia Zhang, Haohai Yu, Huaijin Zhang. Research Progress of Ultrafast Pulsed Lasers in Visible Range[J]. Chinese Journal of Lasers, 2019, 46(5): 0508011.

参考文献

[1] Wheeland R G. Clinical uses of lasers in dermatology[J]. Lasers in Surgery and Medicine, 1995, 16(1): 2-23.

[2] Shapiro M J, Chow C C, Karth P A, et al. Effects of green diode laser in the treatment of pediatric coats disease[J]. American Journal of Ophthalmology, 2011, 151(4): 725-731.

[3] Keller U. Miller D A B, Boyd G D, et al. Solid-state low-loss intracavity saturable absorber for Nd∶YLF lasers: an antiresonant semiconductor Fabry-Perot saturable absorber[J]. Optics Letters, 1992, 17(7): 505-507.

[4] Chellappan K V, Erden E, Urey H. Laser-based displays[J]. Applied Optics, 2010, 49(25): F79-F98.

[5] Hedges M P, Longdell J J, Li Y M, et al. Efficient quantum memory for light[J]. Nature, 2010, 465(7301): 1052-1056.

[6] Kränkel C, Marzahl D T, Moglia F, et al. Out of the blue: semiconductor laser pumped visible rare-earth doped lasers[J]. Laser & Photonics Reviews, 2016, 10(4): 548-568.

[7] Keller U. Recent developments in compact ultrafast lasers[J]. Nature, 2003, 424(6950): 831.

[8] Zhang Y X, Wang S X, Yu H H, et al. Atomic-layer molybdenum sulfide optical modulator for visible coherent light[J]. Scientific Reports, 2015, 5: 11342.

[9] Wu D D, Cai Z P, Zhong Y L, et al. Compact passive Q-switching Pr 3+-doped ZBLAN fiber laser with black phosphorus-based saturable absorber[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23(1): 0900106.

[10] Xu B, Luo S Y, Yan X G, et al. CdTe/CdS quantum dots: effective saturable absorber for visible lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23(5): 1-7.

[11] Luo S Y, Yan X G, Xu B, et al. Few-layer Bi2Se3-based passively Q-switched Pr∶YLF visible lasers[J]. Optics Communications, 2018, 406: 61-65.

[12] Wang S X, Zhang Y X, Xing J, et al. Nonlinear optical response of Au nanorods for broadband pulse modulation in bulk visible lasers[J]. Applied Physics Letters, 2015, 107(16): 161103.

[13] Duling IN. Compact sources of ultrashort pulses[M]. Cambridge: Cambridge University Press, 1995.

[14] Ruan S. French P M W, Chai B H T, et al. Kerr lens modelocked solid state laser in the red (639 nm)[J]. Electronics Letters, 1994, 30(19): 1601-1602.

[15] Ruan S. Chai B H T, Sutherland J M, et al. Kerr-lens mode-locked visible transitions of a Pr∶YLF laser[J]. Optics Letters, 1995, 20(9): 1041-1043.

[16] Tong Y, Shestakov A, Chai B, et al. Self-starting Kerr-lens mode-locked femtosecond Cr 4+∶YAG and picosecond Pr 3+∶YLF solid-state lasers[J]. Optics Letters, 1996, 21(9): 644-646.

[17] Sutherland J M. Chai B H T, French P M W, et al.Visible continuous-wave laser transitions in Pr 3+∶YLF and femtosecond pulse generation[J]. Optics Letters, 1996, 21(11): 797-799.

[18] Esterowitz L, Bartoli F J, Allen R E, et al. Energy levels and line intensities of Pr 3+ in LiYF4[J]. Physical Review B, 1979, 19(12): 6442.

[19] Iijima K, Kariyama R, Tanaka H, et al. Pr 3+∶YLF mode-locked laser at 640 nm directly pumped by InGaN-diode lasers[J]. Applied Optics, 2016, 55(28): 7782-7787.

[20] Hu H. Mulvad H C H, Peucheret C, et al. 10 GHz pulse source for 640 Gbit/s OTDM based on phase modulator and self-phase modulation[J]. Optics Express, 2011, 19(26): B343-B349.

[21] Gerginov V, Tanner C E, Diddams S A, et al. High-resolution spectroscopy with a femtosecond laser frequency comb[J]. Optics Letters, 2005, 30(13): 1734-1736.

[22] Sun Y, Pan J Q, Zhao L J, et al. All-optical clock recovery for 20 Gb/s using an amplified feedback DFB laser[J]. Journal of Lightwave Technology, 2010, 28(17): 2521-2525.

[23] Zhuang W Z, Chang M T, Liang H C, et al. High-power high-repetition-rate subpicosecond monolithic Yb∶KGW laser with self-mode locking[J]. Optics Letters, 2013, 38(14): 2596-2599.

[24] Liang H, Chen R C, Huang Y, et al. Compact efficient multi-GHz Kerr-lens mode-locked diode-pumped Nd∶YVO4 laser[J]. Optics Express, 2008, 16(25): 21149-21154.

[25] Zhang Y X, Yu H H, Zhang H J, et al. Laser-diode pumped self-mode-locked praseodymium visible lasers with multi-gigahertz repetition rate[J]. Optics Letters, 2016, 41(12): 2692-2695.

[26] Xie G Q, Tang D Y, Zhao L M, et al. High-power self-mode-locked Yb∶Y2O3 ceramic laser[J]. Optics Letters, 2007, 32(18): 2741-2743.

[27] Liu K X, Flood C J, Walker D R, et al. Kerr lens mode locking of a diode-pumped Nd∶ YAG laser[J]. Optics Letters, 1992, 17(19): 1361-1363.

[28] Piché M. Beam reshaping and self-mode-locking in nonlinear laser resonators[J]. Optics Communications, 1991, 86(2): 156-160.

[29] Cerullo G, de Silvestri S, Magni V. Self-starting Kerr-lens mode locking of a Ti∶sapphire laser[J]. Optics Letters, 1994, 19(14): 1040-1042.

[30] Hönninger C, Paschotta R, Morier-Genoud F, et al. Q-switching stability limits of continuous-wave passive mode locking[J]. Journal of the Optical Society of America B, 1999, 16(1): 46-56.

[31] Haus H A. Theory of mode locking with a fast saturable absorber[J]. Journal of Applied Physics, 1975, 46(7): 3049-3058.

[32] Haus H. Parameter ranges for CW passive mode locking[J]. IEEE Journal of Quantum Electronics, 1976, 12(3): 169-176.

[33] 张怀金, 张玉霞, 于浩海, 等. 掺镨激光晶体及其全固态脉冲可见激光研究[J]. 硅酸盐学报, 2017, 45(10): 1392-1401.

    Zhang H J, Zhang Y X, Yu H H, et al. Pr 3+-doped laser crystals and their all-solid-state pulse visible lasers[J]. Journal of the Chinese Ceramic Society, 2017, 45(10): 1392-1401.

[34] Tan WD, Tang DY, Xu CW, et al. Evidence of dissipative solitons in Yb 3+∶CaYAlO4[J]. Optics Express , 2011, 19(19): -18500.

[35] Ma J, Huang H T, Ning K J, et al. Generation of 30 fs pulses from a diode-pumped graphene mode-locked Yb∶CaYAlO4 laser[J]. Optics Letters, 2016, 41(5): 890-893.

[36] Cornacchia F, di Lieto A, Tonelli M, et al. . Efficient visible laser emission of GaN laser diode pumped Pr-doped fluoride scheelite crystals[J]. Optics Express, 2008, 16(20): 15932-15941.

[37] Abe R, Kojou J, Masuda K, et al. Cr 4+-doped Y3Al5O12 as a saturable absorber for a Q-switched and mode-locked 639-nm Pr 3+-doped LiYF4 laser[J]. Applied Physics Express, 2013, 6(3): 032703.

[38] KariyamaR, TanakaH, KojouJ, et al. Passive Q-switching of visible Pr 3+∶LiYF4 laser with Cr 4+∶YAG saturable absorber and intracavity second harmonic generation at DUV [C]. Advanced Solid State Lasers, 2014.

[39] Li B, Jia T, Yang Y, et al. Diode-end-pumped passively mode-locked Nd∶GAGG laser at 1.3 μm with SESAM[J]. Laser Physics Letters, 2012, 9(8): 557-560.

[40] Gaponenko M, Metz P W, Härkönen A, et al. SESAM mode-locked red praseodymium laser[J]. Optics Letters, 2014, 39(24): 6939-6941.

[41] Bao Q L, Zhang H, Wang Y, et al. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers[J]. Advanced Functional Materials, 2009, 19(19): 3077-3083.

[42] Novoselov K S, Geim A K, Morozov S, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.

[43] Splendiani A, Sun L, Zhang Y B, et al. Emerging photoluminescence in monolayer MoS2[J]. Nano Letters, 2010, 10(4): 1271-1275.

[44] Qiao J S, Kong X H, Hu Z X, et al. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus[J]. Nature Communications, 2014, 5: 4475.

[45] Wang Y C, Chen W D, Mero M, et al. Sub-100 fs Tm∶MgWO4 laser at 2017 nm mode locked by a graphene saturable absorber[J]. Optics Letters, 2017, 42(16): 3076-3079.

[46] Martinez A, Sun Z P. Nanotube and graphene saturable absorbers for fibre lasers[J]. Nature Photonics, 2013, 7(11): 842-845.

[47] Luo Z Q, Wu D D, Xu B, et al. Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers[J]. Nanoscale, 2016, 8(2): 1066-1072.

[48] George P A, Strait J, Dawlaty J, et al. Ultrafast optical-pump terahertz-probe spectroscopy of the carrier relaxation and recombination dynamics in epitaxial graphene[J]. Nano Letters, 2008, 8(12): 4248-4251.

[49] Bao Q L, Zhang H, Ni Z H, et al. Monolayer graphene as a saturable absorber in a mode-locked laser[J]. Nano Research, 2011, 4(3): 297-307.

[50] Zhang Y X, Lu D Z, Yu H H, et al. Low-dimensional saturable absorbers in the visible spectral region[J]. Advanced Optical Materials, 2019, 7(1): 1800886.

[51] Woodward R I. Howe R C T, Hu G, et al. Few-layer MoS2 saturable absorbers for short-pulse laser technology: current status and future perspectives[J]. Photonics Research, 2015, 3(2): A30.

[52] Zhang Y X, Yu H H, Zhang R, et al. Broadband atomic-layer MoS2 optical modulators for ultrafast pulse generations in the visible range[J]. Optics Letters, 2017, 42(3): 547-550.

[53] Lu S B, Miao L L, Guo Z N, et al. Broadband nonlinear optical response in multi-layer black phosphorus: an emerging infrared and mid-infrared optical material[J]. Optics Express, 2015, 23(9): 11183-11194.

[54] Hanlon D, Backes C, Doherty E, et al. Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics[J]. Nature Communications, 2015, 6: 8563.

[55] Luo Z Q, Huang Y Z, Weng J, et al. 1.06 nm Q-switched ytterbium-doped fiber laser using few-layer topological insulator Bi2Te3 as a saturable absorber[J]. Optics Express, 2013, 21(24): 29516-29522.

[56] Zhang Z Y, Shao C L, Li X H, et al. Electrospun nanofibers of p-type NiO/n-type ZnO heterojunctions with enhanced photocatalytic activity[J]. ACS Applied Materials & Interfaces, 2010, 2(10): 2915-2923.

[57] Anisimov V I, Solovyev I V, Korotin M A, et al. Density-functional theory and NiO photoemission spectra[J]. Physical Review B, 1993, 48(23): 16929-16934.

[58] Newman R, Chrenko R M. Optical properties of nickel oxide[J]. Physical Review, 1959, 114(6): 1507-1513.

[59] Volkov V V, Wang Z L, Zou B S. Carrier recombination in clusters of NiO[J]. Chemical Physics Letters, 2001, 337(1/2/3): 117-124.

[60] Sun B, Zhang Y X, Zhang R, et al. Nonlinear optical response during the electron transition process originated from 3D spin-orbit splitting in NiO nanosheets[J]. Optics Express, 2018, 26(2): 1230-1236.

张玉霞, 于浩海, 张怀金. 可见波段超快脉冲激光研究进展[J]. 中国激光, 2019, 46(5): 0508011. Yuxia Zhang, Haohai Yu, Huaijin Zhang. Research Progress of Ultrafast Pulsed Lasers in Visible Range[J]. Chinese Journal of Lasers, 2019, 46(5): 0508011.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!