Photonics Research, 2020, 8 (2): 02000175, Published Online: Feb. 10, 2020   

Microcrystal modulated exciton-polariton emissions from single ZnO@ZnO:Ga microwire Download: 636次

Author Affiliations
1 College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
2 Key Laboratory for Intelligent Nano Materials and Devices (MOE), Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
3 e-mail: cxkan@nuaa.edu.cn
Copy Citation Text

Wangqi Mao, Mingming Jiang, Jiaolong Ji, Peng Wan, Xiangbo Zhou, Caixia Kan. Microcrystal modulated exciton-polariton emissions from single ZnO@ZnO:Ga microwire[J]. Photonics Research, 2020, 8(2): 02000175.

References

[1] Y. Peng, W. Lu, P. Ren, Y. Ni, Y. Wang, L. Zhang, Y.-J. Zeng, W. Zhang, S. Ruan. Integration of nanoscale light emitters: an efficient ultraviolet and blue random lasing from NAYF4:Yb/Tm hexagonal nanocrystals. Photon. Res., 2018, 6: 943-947.

[2] D. J. Garfield, N. J. Borys, S. M. Hamed, N. A. Torquato, C. A. Tajon, B. Tian, B. Shevitski, E. S. Barnard, Y. D. Suh, S. Aloni, J. B. Neaton, E. M. Chan, B. E. Cohen, P. J. Schuck. Enrichment of molecular antenna triplets amplifies upconverting nanoparticle emission. Nat. Photonics, 2018, 12: 402-407.

[3] X. Liu, K. Mashooq, D. A. Laleyan, E. T. Reid, Z. Mi. Algan nanocrystals: building blocks for efficient ultraviolet optoelectronics. Photon. Res., 2019, 7: B12-B23.

[4] J. J. Cole, X. Wang, R. J. Knuesel, H. O. Jacobs. Integration of ZnO microcrystals with tailored dimensions forming light emitting diodes and UV photovoltaic cells. Nano Lett., 2008, 8: 1477-1481.

[5] H. Siampour, S. Kumar, V. A. Davydov, L. F. Kulikova, V. N. Agafonov, S. I. Bozhevolnyi. On-chip excitation of single germanium-vacancies in nanodiamonds embedded in plasmonic waveguides. Light Sci. Appl., 2018, 7: 61.

[6] Y. Wu, Z. Li, K.-W. Ang, Y. Jia, Z. Shi, Z. Huang, W. Yu, X. Sun, X. Liu, D. Li. Monolithic integration of MoS2-based visible detectors and GaN-based UV detectors. Photon. Res., 2019, 7: 1127-1133.

[7] Y. Wang, X. Wang, B. Zhu, Z. Shi, J. Yuan, X. Gao, Y. Liu, X. Sun, D. Li, H. Amano. Full-duplex light communication with a monolithic multicomponent system. Light Sci. Appl., 2018, 7: 83.

[8] J. Tatebayashi, S. Kako, J. Ho, Y. Ota, S. Iwamoto, Y. Arakawa. Room-temperature lasing in a single nanowire with quantum dots. Nat. Photonics, 2015, 9: 501-505.

[9] M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, C. M. Lieber. Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature, 2002, 415: 617-620.

[10] P. Narayan, G. David, T. Jason, X. Peng. An alternative of CdSe nanocrystal emitters: pure and tunable impurity emissions in ZnSe nanocrystals. J. Am. Chem. Soc., 2005, 127: 17586-17587.

[11] Z. Xiao, R. A. Kerner, L. Zhao, N. L. Tran, K. M. Lee, T. W. Koh, G. D. Scholes, B. P. Rand. Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites. Nat. Photonics, 2017, 11: 108-115.

[12] T. Uchino, D. Okutsu. Broadband laser emission from color centers inside MgO microcrystals. Phys. Rev. Lett., 2008, 101: 117401.

[13] R. Saran, R. J. Curry. Lead sulphide nanocrystal photodetector technologies. Nat. Photonics, 2016, 10: 81-92.

[14] X. Wang, J. Zhuang, Q. Peng, Y. Li. A general strategy for nanocrystal synthesis. Nature, 2005, 437: 121-124.

[15] F. P. Garcia de Arquer, A. Armin, P. Meredith, E. H. Sargent. Corrigendum: solution-processed semiconductors for next-generation photodetectors. Nat. Rev. Mater., 2017, 2: 16100.

[16] I. Song, S. C. Lee, X. Shang, J. Ahn, H. J. Jung, C. U. Jeong, S. W. Kim, W. Yoon, H. Yun, O. P. Kwon. High-performance visible-blind UV phototransistors based on n-type naphthalene diimide nanomaterials. ACS Appl. Mater. Interface, 2018, 10: 11826-11836.

[17] X. Zhang, J. Jie, W. Deng, Q. Shang, J. Wang, H. Wang, X. Chen, X. Zhang. Alignment and patterning of ordered small-molecule organic semiconductor micro-/nanocrystals for device applications. Adv. Mater., 2016, 28: 2475-2503.

[18] D. Sun, D. Yi, X. Tian, Z. Li, Z. Chen, C. Zhu. Microwave-assisted synthesis and optical properties of cuprous oxide micro/nanocrystals. Mater. Res. Bull., 2014, 60: 704-708.

[19] W. Cao, W. Du, F. Su, G. Li. Anti-Stokes photoluminescence in ZnO microcrystal. Appl. Phys. Lett., 2006, 89: 031902.

[20] H. Dong, Y. Wei, W. Zhang, C. Wei, C. Zhang, J. Yao, Y. S. Zhao. Broadband tunable microlasers based on controlled intramolecular charge-transfer process in organic supramolecular microcrystals. J. Am. Chem. Soc., 2016, 138: 1118-1121.

[21] B. Yang, H. Chen, X. Shuang, Q. Xue, Z. Teng, Z. Zhu, L. Qiang, H. Chen, Y. Yun, Z. Hu. Effects of a molecular monolayer modification of NiO nanocrystal layer surfaces on perovskite crystallization and interface contact toward faster hole extraction and higher photovoltaic performance. Adv. Funct. Mater., 2016, 26: 2950-2958.

[22] L. Korala, M. Braun, J. M. Kephart, Z. Tregillus, A. L. Prieto. Ligand-exchanged CZTS nanocrystal thin films: does nanocrystal surface passivation effectively improve photovoltaic performance?. Chem. Mater., 2017, 29: 6621-6629.

[23] X. Wang, H. Li, Y. Wu, Z. Xu, H. Fu. Tunable morphology of the self-assembled organic microcrystals for the efficient laser optical resonator by molecular modulation. J. Am. Chem. Soc., 2014, 136: 16602-16608.

[24] H. He, E. Ma, J. Yu, Y. Cui, Y. Lin, Y. Yang, X. Chen, B. Chen, G. Qian. Periodically aligned dye molecules integrated in a single MOF microcrystal exhibit single-mode linearly polarized lasing. Adv. Opt. Mater., 2017, 5: 1601040.

[25] J. W. Soares, J. E. Whitten, D. W. Oblas, D. M. Steeves. Novel photoluminescence properties of surface-modified nanocrystalline zinc oxide: toward a reactive scaffold. Langmuir, 2008, 24: 371-374.

[26] Z. Wang, J. Christiansen, D. Wezendonk, X. Xie, M. A. van Huis, A. Meijerink. Thermal enhancement and quenching of upconversion emission in nanocrystals. Nanoscale, 2019, 11: 12188-12197.

[27] O. Jamadi, F. Reveret, P. Disseix, F. Medard, J. Leymarie, A. Moreau, D. Solnyshkov, C. Deparis, M. Leroux, J. Zuniga-Perez. Edge-emitting polariton laser and amplifier based on a ZnO waveguide. Light Sci. Appl., 2017, 7: 82.

[28] M. Jiang, W. Mao, X. Zhou, C. Kan, D. N. Shi. Wavelength-tunable waveguide emissions from electrically driven single ZnO/ZnO:Ga superlattice microwires. ACS Appl. Mater. Interface, 2019, 11: 11800-11811.

[29] M. Jiang, G. He, H. Chen, Z. Zhang, L. Zheng, C. Shan, D. Shen, X. Fang. Wavelength-tunable electroluminescent light sources from individual Ga-doped ZnO microwires. Small, 2017, 13: 1604034.

[30] Z. Li, M. Jiang, Y. Sun, Z. Zhang, B. Li, H. Zhao, C. Shan, D. Shen. Electrically pumped Fabry–Perot microlasers from single Ga-doped ZnO microbelt based heterostructure diodes. Nanoscale, 2018, 10: 18774-18785.

[31] C. Xu, J. Dai, G. Zhu, G. Zhu, L. Yi, J. Li, Z. Shi. Whispering gallery mode lasing in ZnO microcavities. Laser Photon. Rev., 2014, 8: 469-494.

[32] Y. Liu, M. Jiang, Z. Zhang, B. Li, H. Zhao, C. Shan, D. Shen. Electrically excited hot-electron dominated fluorescent emitters using individual Ga-doped ZnO microwires via metal quasiparticle film decoration. Nanoscale, 2018, 10: 5678-5688.

[33] W. Peng, S. Qu, G. Cong, Z. Wang. Synthesis and structures of morphology-controlled ZnO nano- and microcrystals. Cryst. Growth Des., 2006, 6: 1518-1522.

[34] Z. Li, F. Xu, X. Sun, W. Zhang. Oriented attachment in vapor: formation of ZnO three-dimensional structures by intergrowth of ZnO microcrystals. Cryst. Growth Des., 2008, 8: 805-807.

[35] J. Dai, C. Xu, T. Nakamura, Y. Wang, J. Li, Y. Lin. Electron-hole plasma induced band gap renormalization in ZnO microlaser cavities. Opt. Express, 2014, 22: 28831-28837.

[36] M. Ding, D. Zhao, B. Yao, E. Shulin, Z. Guo, L. Zhang, D. Shen. The ultraviolet laser from individual ZnO microwire with quadrate cross section. Opt. Express, 2012, 20: 13657-13662.

[37] Y. Liu, M. Jiang, G. He, S. Li, Z. Zhang, B. Li, H. Zhao, C. Shan, D. Z. Shen. Wavelength-tunable ultraviolet electroluminescence from Ga-doped ZnO microwires. ACS Appl. Mater. Interface, 2017, 9: 40743-40751.

[38] G. D. Yuan, W. J. Zhang, J. S. Jie, X. Fan, J. X. Tang, I. Shafiq, Z. Z. Ye, C. S. Lee, S. T. Lee. Tunable n-type conductivity and transport properties of Ga-doped ZnO nanowire arrays. Adv. Mater., 2010, 20: 168-173.

[39] W. T. Ruane, K. M. Johansen, K. D. Leedy, D. C. Look, W. H. Von, M. Grundmann, G. C. Farlow, L. J. Brillson. Defect segregation and optical emission in ZnO nano- and microwires. Nanoscale, 2016, 8: 7631-7637.

[40] T. Nakamura, K. Firdaus, S. Adachi. Electron-hole plasma lasing in a ZnO random laser. Phys. Rev. B, 2012, 86: 205103.

[41] R. Chen, Q. L. Ye, T. He, V. D. Ta, Y. Ying, Y. Y. Tay, T. Wu, H. Sun. Exciton localization and optical properties improvement in nanocrystal-embedded ZnO core–shell nanowires. Nano Lett., 2013, 13: 734-739.

[42] D. Mrinal, T. Lavanya, T. Pham Van, F. Naoki. High efficiency hybrid solar cells using nanocrystalline Si quantum dots and Si nanowires. ACS Nano, 2015, 9: 6891-6899.

[43] M.-P. Zhuo, X.-Y. Fei, Y.-C. Tao, J. Fan, X.-D. Wang, W.-F. Xie, L.-S. Liao. In situ construction of one-dimensional component-interchange organic core/shell microrods for multicolor continuous-variable optical waveguide. ACS Appl. Mater. Interface, 2019, 11: 5298-5305.

[44] B. Zhao, S. Bai, V. Kim, R. Lamboll, R. Shivanna, F. Auras, J. M. Richter, L. Yang, L. Dai, M. Alsari, X.-J. She, L. Liang, J. Zhang, S. Lilliu, P. Gao, H. J. Snaith, J. Wang, N. C. Greenham, R. H. Friend, D. Di. High-efficiency perovskite-polymer bulk heterostructure light-emitting diodes. Nat. Photonics, 2018, 12: 783-789.

[45] H. Dong, C. Zhang, Y. Liu, Y. Yan, F. Hu, Y. S. Zhao. Organic microcrystal vibronic lasers with full-spectrum tunable output beyond the Franck–Condon principle. Angew. Chem., 2018, 130: 3162-3166.

[46] H. Wang, J. Wen, W. Wang, N. Xu, P. Liu, J. Yan, H. Chen, S. Deng. Resonance coupling in heterostructures composed of silicon nanosphere and monolayer WS2: a magnetic-dipole-mediated energy transfer process. ACS Nano, 2019, 13: 1739-1750.

[47] F. Di Stasio, A. Polovitsyn, I. Angeloni, I. Moreels, R. Krahne. Broadband amplified spontaneous emission and random lasing from wurtzite CdSe/CdS ‘giant-shell’ nanocrystals. ACS Photon., 2016, 3: 2083-2088.

[48] B. Zhao, F. Wang, H. Chen, Y. Wang, M. Jiang, X. Fang, D. Zhao. Solar-blind avalanche photodetector based on single ZnO-Ga2O3 core–shell microwire. Nano Lett., 2015, 15: 3988-3993.

[49] Z. Chen, S. Berciaud, C. Nuckolls, T. F. Heinz, L. E. Brus. Energy transfer from individual semiconductor nanocrystals to graphene. ACS Nano, 2010, 4: 2964-2968.

[50] R. Begum, M. R. Parida, A. L. Abdelhady, B. Murali, N. M. Alyami, G. H. Ahmed, M. N. Hedhili, O. M. Bakr, O. F. Mohammed. Engineering interfacial charge transfer in CsPbBr3 perovskite nanocrystals by heterovalent doping. J. Am. Chem. Soc., 2016, 139: 731-737.

[51] S. Kreinberg, W. W. Chow, J. Wolters, C. Schneider, C. Gies, F. Jahnke, S. Hofling, M. Kamp, S. Reitzenstein. Emission from quantum-dot high-β microcavities: transition from spontaneous emission to lasing and the effects of superradiant emitter coupling. Light Sci. Appl., 2017, 6: e17030.

[52] D. Vanmaekelbergh, L. K. van Vugt. ZnO nanowire lasers. Nanoscale, 2011, 3: 2783-2800.

[53] Z. Zhang, Y. Wang, S. Yin, T. Hu, Y. Wang, L. Liao, S. Luo, J. Wang, X. Zhang, P. Ni, X. Shen, C. Shan, Z. Chen. Exciton-polariton light-emitting diode based on a ZnO microwire. Opt. Express, 2017, 25: 17375-17381.

[54] W. Du, S. Zhang, J. Shi, J. Chen, Z. Wu, Y. Mi, Z. Liu, Y. Li, X. Sui, T. Wu. Strong exciton-photon coupling and lasing behavior in all-inorganic CsPbBr3 micro/nanowire Fabry–Perot cavity. ACS Photon., 2018, 5: 2051-2059.

[55] J. Lagois. Depth-dependent eigenenergies and damping of excitonic polaritons near a semiconductor surface. Phys. Rev. B, 1981, 23: 5511-5520.

[56] L. Sun, Z. Chen, Q. Ren, K. Yu, L. Bai, W. Zhou, H. Xiong, Z. Q. Zhu, X. Shen. Direct observation of whispering gallery mode polaritons and their dispersion in a ZnO tapered microcavity. Phys. Rev. Lett., 2008, 100: 156403.

[57] A. Chen, H. Zhu, Y. Wu, G. Lou, Y. Liang, J. Li, Z. Chen, Y. Ren, X. Gui, S. Wang, Z. Tang. Electrically driven single microwire-based heterojuction light-emitting devices. ACS Photon., 2017, 4: 1286-1291.

[58] J. Dai, C. X. Xu, X. W. Sun. ZnO-microrod/p-gan heterostructured whispering-gallery-mode microlaser diodes. Adv. Mater., 2011, 23: 4115-4119.

[59] Y. Lai, Y. Lan, T. Lu. Strong light-matter interaction in ZnO microcavities. Light Sci. Appl., 2013, 2: e76.

[60] L. Sun, H. Dong, W. Xie, Z. An, X. Shen, Z. Chen. Quasi-whispering gallery modes of exciton-polaritons in a ZnO microrod. Opt. Express, 2010, 18: 15371-15376.

[61] S. Zhang, Q. Shang, W. Du, J. Shi, Z. Wu, Y. Mi, J. Chen, F. Liu, Y. Li, M. Liu, Q. Zhang, X. Liu. Strong exciton-photon coupling in hybrid inorganic–organic perovskite micro/nanowires. Adv. Opt. Mater., 2018, 6: 1701032.

Wangqi Mao, Mingming Jiang, Jiaolong Ji, Peng Wan, Xiangbo Zhou, Caixia Kan. Microcrystal modulated exciton-polariton emissions from single ZnO@ZnO:Ga microwire[J]. Photonics Research, 2020, 8(2): 02000175.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!