中国激光, 2018, 45 (6): 0606001, 网络出版: 2018-07-05   

大气湍流影响下基于自适应判决门限的逆向调制自由空间光通信系统误码率性能分析 下载: 1220次

Bit Error Rate Performance for Modulating Retro-Reflector Free Space OpticalCommunication System Based on Adaptive Threshold under Atmospheric Turbulence
作者单位
长春理工大学空间光电技术国家地方联合工程研究中心, 吉林 长春 130022
引用该论文

李晓燕, 张鹏, 佟首峰. 大气湍流影响下基于自适应判决门限的逆向调制自由空间光通信系统误码率性能分析[J]. 中国激光, 2018, 45(6): 0606001.

Xiaoyan Li, Peng Zhang, Shoufeng Tong. Bit Error Rate Performance for Modulating Retro-Reflector Free Space OpticalCommunication System Based on Adaptive Threshold under Atmospheric Turbulence[J]. Chinese Journal of Lasers, 2018, 45(6): 0606001.

参考文献

[1] 韩立强, 游雅晖. 大气衰减和大气湍流效应下多输入多输出自由空间光通信的性能[J]. 中国激光, 2016, 43(7): 0706004.

    韩立强, 游雅晖. 大气衰减和大气湍流效应下多输入多输出自由空间光通信的性能[J]. 中国激光, 2016, 43(7): 0706004.

    Han L Q, You Y H. Performance of multiple input multiple output free space optical communication under atmospheric turbulence and atmospheric attenuation[J]. Chinese Journal of Lasers, 2016, 43(7): 0706004.

    Han L Q, You Y H. Performance of multiple input multiple output free space optical communication under atmospheric turbulence and atmospheric attenuation[J]. Chinese Journal of Lasers, 2016, 43(7): 0706004.

[2] Rosenkrantz E, Arnon S. 1550 nm modulating retroreflector based on coated nanoparticles for free-space optical communication[J]. Applied Optics, 2015, 54(17): 5309-5313.

    Rosenkrantz E, Arnon S. 1550 nm modulating retroreflector based on coated nanoparticles for free-space optical communication[J]. Applied Optics, 2015, 54(17): 5309-5313.

[3] Goetz PG, Rabinovich WS, MahonR, et al. Modulating retro-reflector devices and current link performance at the naval research laboratory[C]∥Military Communications Conference, 2007. MILCOM 2007. IEEE, 2007: 1- 7.

    Goetz PG, Rabinovich WS, MahonR, et al. Modulating retro-reflector devices and current link performance at the naval research laboratory[C]∥Military Communications Conference, 2007. MILCOM 2007. IEEE, 2007: 1- 7.

[4] Goetz P G, Rabinovich W S, Mahon R, et al. Modulating retro-reflector lasercom systems for small unmanned vehicles[J]. IEEE Journal on Selected Areas in Communications, 2012, 30(5): 986-992.

    Goetz P G, Rabinovich W S, Mahon R, et al. Modulating retro-reflector lasercom systems for small unmanned vehicles[J]. IEEE Journal on Selected Areas in Communications, 2012, 30(5): 986-992.

[5] Gil Y, Rotter N, Arnon S. Feasibility of retroreflective transdermal optical wireless communication[J]. Applied Optics, 2012, 51(18): 4232-4239.

    Gil Y, Rotter N, Arnon S. Feasibility of retroreflective transdermal optical wireless communication[J]. Applied Optics, 2012, 51(18): 4232-4239.

[6] Rabinovich W S, Mahon R, Ferraro M, et al. Reduction of scintillation in optical modulating retro-reflector links[J]. Optics Express, 2014, 22(23): 28553-28565.

    Rabinovich W S, Mahon R, Ferraro M, et al. Reduction of scintillation in optical modulating retro-reflector links[J]. Optics Express, 2014, 22(23): 28553-28565.

[7] Rabinovich WS, MahonR, Ferraro MS, et al. Diversity effects in modulating retro-reflector links[C]. SPIE, 2014, 9080: 90801B.

    Rabinovich WS, MahonR, Ferraro MS, et al. Diversity effects in modulating retro-reflector links[C]. SPIE, 2014, 9080: 90801B.

[8] Plett M, Rabinovich W S, Mahon R, et al. Free-space optical communication link across 16 kilometers over the Chesapeake Bay to a modulated retroreflector array[J]. Optical Engineering, 2008, 47(4): 045001.

    Plett M, Rabinovich W S, Mahon R, et al. Free-space optical communication link across 16 kilometers over the Chesapeake Bay to a modulated retroreflector array[J]. Optical Engineering, 2008, 47(4): 045001.

[9] RosenkrantzE, ArnonS. An innovative modulating retro-reflector for free-space optical communication[C]. SPIE, 2013, 8874: 88740D.

    RosenkrantzE, ArnonS. An innovative modulating retro-reflector for free-space optical communication[C]. SPIE, 2013, 8874: 88740D.

[10] Mahon R, Ferraro M S, Goetz P G, et al. Irradiance correlations in retro-reflected beams[J]. Applied Optics, 2015, 54(31): F96-F102.

    Mahon R, Ferraro M S, Goetz P G, et al. Irradiance correlations in retro-reflected beams[J]. Applied Optics, 2015, 54(31): F96-F102.

[11] Mahon R, Moore C I, Ferraro M, et al. Atmospheric turbulence effects measured along horizontal-path optical retro-reflector links[J]. Applied Optics, 2012, 51(25): 6147-6158.

    Mahon R, Moore C I, Ferraro M, et al. Atmospheric turbulence effects measured along horizontal-path optical retro-reflector links[J]. Applied Optics, 2012, 51(25): 6147-6158.

[12] Yang G W, Li Z P, Bi M H, et al. Channel modeling and performance analysis of modulating retroreflector FSO systems under weak turbulence conditions[J]. IEEE Photonics Journal, 2017, 9(2): 16755236.

    Yang G W, Li Z P, Bi M H, et al. Channel modeling and performance analysis of modulating retroreflector FSO systems under weak turbulence conditions[J]. IEEE Photonics Journal, 2017, 9(2): 16755236.

[13] Avlonitis N, Charlesworth P B. Performance of retro reflector-modulated links under weak turbulence[J]. IET Optoelectronics, 2012, 6(6): 290-297.

    Avlonitis N, Charlesworth P B. Performance of retro reflector-modulated links under weak turbulence[J]. IET Optoelectronics, 2012, 6(6): 290-297.

[14] 吴晓军, 王红星, 李笔锋, 等. 不同传输环境下大气湍流对无线光通信衰落特性影响分析[J]. 中国激光, 2015, 42(5): 0513001.

    吴晓军, 王红星, 李笔锋, 等. 不同传输环境下大气湍流对无线光通信衰落特性影响分析[J]. 中国激光, 2015, 42(5): 0513001.

    Wu X J, Wang H X, Li B F, et al. Affect analysis of atmospheric turbulence on fading characteristics in free-space optical system over different environments[J]. Chinese Journal of Lasers, 2015, 42(5): 0513001.

    Wu X J, Wang H X, Li B F, et al. Affect analysis of atmospheric turbulence on fading characteristics in free-space optical system over different environments[J]. Chinese Journal of Lasers, 2015, 42(5): 0513001.

[15] 张慧颖, 李洪祚, 肖冬亚, 等. 大气湍流综合效应下空间分集接收性能研究[J]. 中国激光, 2016, 43(4): 0405002.

    张慧颖, 李洪祚, 肖冬亚, 等. 大气湍流综合效应下空间分集接收性能研究[J]. 中国激光, 2016, 43(4): 0405002.

    Zhang H Y, Li H Z, Xiao D Y, et al. Performance analysis of spatial-diversity reception over combined effects of atmospheric turbulence[J]. Chinese Journal of Lasers, 2016, 43(4): 0405002.

    Zhang H Y, Li H Z, Xiao D Y, et al. Performance analysis of spatial-diversity reception over combined effects of atmospheric turbulence[J]. Chinese Journal of Lasers, 2016, 43(4): 0405002.

[16] Geng D X, Du P F, Wang W, et al. Single laser free-space duplex communication system with adaptive threshold technique and BER analysis in weak turbulent atmosphere[J]. Optics Letters, 2014, 39(13): 3950-3953.

    Geng D X, Du P F, Wang W, et al. Single laser free-space duplex communication system with adaptive threshold technique and BER analysis in weak turbulent atmosphere[J]. Optics Letters, 2014, 39(13): 3950-3953.

[17] Nistazakis H E, Karagianni E A, Tsigopoulos A D, et al. Average capacity of optical wireless communication systems over atmospheric turbulence channels[J]. Journal of Lightwave Technology, 2009, 27(8): 974-979.

    Nistazakis H E, Karagianni E A, Tsigopoulos A D, et al. Average capacity of optical wireless communication systems over atmospheric turbulence channels[J]. Journal of Lightwave Technology, 2009, 27(8): 974-979.

[18] Liu C, Yao Y, Sun Y X, et al. Analysis of average capacity for free-space optical links with pointing errors over gamma-gamma turbulence channels[J]. Chinese Optics Letters, 2010, 8(6): 537-540.

    Liu C, Yao Y, Sun Y X, et al. Analysis of average capacity for free-space optical links with pointing errors over gamma-gamma turbulence channels[J]. Chinese Optics Letters, 2010, 8(6): 537-540.

[19] Song T Y, Kam P Y. A robust GLRT receiver with implicit channel estimation and automatic threshold adjustment for the free space optical channel with IM/DD[J]. Journal of Lightwave Technology, 2014, 32(3): 369-383.

    Song T Y, Kam P Y. A robust GLRT receiver with implicit channel estimation and automatic threshold adjustment for the free space optical channel with IM/DD[J]. Journal of Lightwave Technology, 2014, 32(3): 369-383.

[20] Moradi H, Refai H H. LoPresti P G. Thresholding-based optimal detection of wireless optical signals[J]. Journal of Optical Communications and Networking, 2010, 2(9): 689-700.

    Moradi H, Refai H H. LoPresti P G. Thresholding-based optimal detection of wireless optical signals[J]. Journal of Optical Communications and Networking, 2010, 2(9): 689-700.

[21] Majumdar A K. Free-space laser communication performance in the atmospheric channel[J]. Journal of Optical and Fiber Communications Reports, 2005, 2(4): 345-396.

    Majumdar A K. Free-space laser communication performance in the atmospheric channel[J]. Journal of Optical and Fiber Communications Reports, 2005, 2(4): 345-396.

[22] Li X Y, Zhao X H, Zhang P, et al. Probability density function of turbulence fading in MRR free space optical link and its applications in MRR free space optical communications[J]. IET Communications, 2017, 11(16): 2476-2481.

    Li X Y, Zhao X H, Zhang P, et al. Probability density function of turbulence fading in MRR free space optical link and its applications in MRR free space optical communications[J]. IET Communications, 2017, 11(16): 2476-2481.

[23] Adamchik VS, Marichev OI. The algorithm for calculating integrals of hypergeometric type functions and its realization in REDUCE system[C]∥Proceedings of the International Symposium on Symbolic and Algebraic Computation, 1990: 212- 224.

    Adamchik VS, Marichev OI. The algorithm for calculating integrals of hypergeometric type functions and its realization in REDUCE system[C]∥Proceedings of the International Symposium on Symbolic and Algebraic Computation, 1990: 212- 224.

[24] Simon MK, Alouini MS. Digital communication over fading channels[M]. Hoboken: John Wiley & Sons, 2005.

    Simon MK, Alouini MS. Digital communication over fading channels[M]. Hoboken: John Wiley & Sons, 2005.

[25] AbramowitzM, Stegun IA. Handbook of mathematical functions: with formulas, graphs, and mathematical tables[M]. New York: Dover Publications, 1965.

    AbramowitzM, Stegun IA. Handbook of mathematical functions: with formulas, graphs, and mathematical tables[M]. New York: Dover Publications, 1965.

[26] Prudnikov AP, Brychkov YA, Marichev OI. Integrals and series, vol 3: more special functions[M]. New York: Gordon and Breach Science Publishers, 1986.

    Prudnikov AP, Brychkov YA, Marichev OI. Integrals and series, vol 3: more special functions[M]. New York: Gordon and Breach Science Publishers, 1986.

李晓燕, 张鹏, 佟首峰. 大气湍流影响下基于自适应判决门限的逆向调制自由空间光通信系统误码率性能分析[J]. 中国激光, 2018, 45(6): 0606001. Xiaoyan Li, Peng Zhang, Shoufeng Tong. Bit Error Rate Performance for Modulating Retro-Reflector Free Space OpticalCommunication System Based on Adaptive Threshold under Atmospheric Turbulence[J]. Chinese Journal of Lasers, 2018, 45(6): 0606001.

本文已被 11 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!