Photonics Research, 2021, 9 (2): 02000266, Published Online: Feb. 2, 2021   

Vortex random fiber laser with controllable orbital angular momentum mode Download: 638次

Author Affiliations
1 College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
2 e-mail: jmxu1988@163.com
Copy Citation Text

Xiaoya Ma, Jun Ye, Yang Zhang, Jiangming Xu, Jian Wu, Tianfu Yao, Jinyong Leng, Pu Zhou. Vortex random fiber laser with controllable orbital angular momentum mode[J]. Photonics Research, 2021, 9(2): 02000266.

References

[1] L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, J. P. Woerdman. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A, 1992, 45: 8185-8189.

[2] A. M. Yao, M. J. Padgett. Orbital angular momentum: origins, behavior and applications. Adv. Opt. Photon., 2011, 3: 161-204.

[3] M. R. Dennis, K. O’Holleran, M. J. Padgett. Singular optics: optical vortices and polarization singularities. Prog. Opt., 2009, 53: 293-363.

[4] Y. Shen, X. Wang, Z. Xie, C. Min, X. Fu, Q. Liu, M. Gong, X. Yuan. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light Sci. Appl., 2019, 8: 90.

[5] W. Zhang, K. Wei, D. Mao, H. Wang, F. Gao, L. Huang, T. Mei, J. Zhao. Generation of femtosecond optical vortex pulse in fiber based on an acoustically induced fiber grating. Opt. Lett., 2017, 42: 454-457.

[6] T. Wang, A. Yang, F. Shi, Y. Huang, J. Wen, X. Zeng. High-order mode lasing in all-FMF laser cavities. Photon. Res., 2019, 7: 42-49.

[7] B. Wang, W. Liu, M. Zhao, J. Wang, Y. Zhang, A. Chen, F. Guan, X. Liu, L. Shi, J. Zi. Generating optical vortex beams by momentum-space polarization vortices centred at bound states in the continuum. Nat. Photonics, 2020, 14: 623-628.

[8] Y. Zhang, X. Yang, J. Gao. Orbital angular momentum transformation of optical vortex with aluminum metasurfaces. Sci. Rep., 2019, 9: 9133.

[9] S. Fu, T. Wang, C. Gao. Perfect optical vortex array with controllable diffraction order and topological charge. J. Opt. Soc. Am. A, 2016, 33: 1836-1842.

[10] J. Zeng, R. Lin, X. Liu, C. Zhao, Y. Cai. Review on partially coherent vortex beams. Front. Optoelectron., 2019, 12: 229-248.

[11] A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, S. Ashrafi. Optical communications using orbital angular momentum beams. Adv. Opt. Photon., 2015, 7: 66-106.

[12] J. Liu, S. Li, J. Du, C. Klitis, C. Du, Q. Mo, M. Sorel, S. Yu, X. Cai, J. Wang. Performance evaluation of analog signal transmission in an integrated optical vortex emitter to 3.6-km few-mode fiber system. Opt. Lett., 2016, 41: 1969-1972.

[13] D. G. Grier. A revolution in optical manipulation. Nature, 2003, 424: 810-816.

[14] D. M. Palacios, I. D. Maleev, A. S. Marathay, G. A. Swartzlander. Spatial correlation singularity of a vortex field. Phys. Rev. Lett., 2004, 92: 143905.

[15] J. Peřina, Z. Bouchal. Non-diffracting beams with controlled spatial coherence. J. Mod. Opt., 2002, 49: 1673-1689.

[16] M. Dong, D. Jiang, N. Luo, Y. Yang. Trapping two types of Rayleigh particles using a focused partially coherent anomalous vortex beam. Appl. Phys. B, 2019, 125: 55.

[17] J. Yu, Y. Huang, F. Wang, X. Liu, G. Gbur, Y. Cai. Scintillation properties of a partially coherent vector beam with vortex phase in turbulent atmosphere. Opt. Express, 2019, 27: 26676-26688.

[18] N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, S. Ramachandran. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science, 2013, 340: 1545-1548.

[19] J. Liu, S.-M. Li, L. Zhu, A.-D. Wang, S. Chen, C. Klitis, C. Du, Q. Mo, M. Sorel, S.-Y. Yu, X.-L. Cai, J. Wang. Direct fiber vector eigenmode multiplexing transmission seeded by integrated optical vortex emitters. Light Sci. Appl., 2018, 7: 17148.

[20] D. Lin, J. Carpenter, Y. Feng, S. Jain, Y. Jung, Y. Feng, M. N. Zervas, D. J. Richardson. Reconfigurable structured light generation in a multicore fibre amplifier. Nat. Commun., 2020, 11: 3986.

[21] F. Brunet, Y. Taillon, P. Galarneau, S. LaRochelle. A simple model describing both self-mode locking and sustained self-pulsing in ytterbium-doped ring fiber lasers. J. Lightwave Technol., 2005, 23: 2131-2138.

[22] Y. Tang, J. Xu. Effects of excited-state absorption on self-pulsing in Tm3+-doped fiber lasers. J. Opt. Soc. Am. B, 2010, 27: 179-186.

[23] J. Xu, Z. Lou, J. Ye, J. Wu, J. Leng, H. Xiao, H. Zhang, P. Zhou. Incoherently pumped high-power linearly-polarized single-mode random fiber laser: experimental investigations and theoretical prospects. Opt. Express, 2017, 25: 5609-5617.

[24] N. Jhajj, I. Larkin, E. W. Rosenthal, S. Zahedpour, J. K. Wahlstrand, H. M. Milchberg. Spatiotemporal optical vortices. Phys. Rev. X, 2016, 6: 031037.

[25] S. W. Hancock, S. Zahedpour, A. Goffin, H. M. Milchberg. Free-space propagation of spatiotemporal optical vortices. Optica, 2019, 6: 1547-1553.

[26] L. Rego, K. Dorney, N. Brooks, Q. Nguyen, C.-T. Liao, J. San Roman, D. Couch, A. Liu, E. Pisanty, M. Lewenstein, L. Plaja, H. Kapteyn, M. Murnane, C. Hernández-García. Generation of extreme-ultraviolet beams with time-varying orbital angular momentum. Science, 2019, 364: eaaw9486.

[27] A. Chong, C. Wan, J. Chen, Q. Zhan. Generation of spatiotemporal optical vortices with controllable transverse orbital angular momentum. Nat. Photonics, 2020, 14: 350-354.

[28] S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, E. V. Podivilov. Random distributed feedback fibre laser. Nat. Photonics, 2010, 4: 231-235.

[29] S. K. Turitsyn, S. A. Babin, D. V. Churkin, I. D. Vatnik, M. Nikulin, E. V. Podivilov. Random distributed feedback fibre lasers. Phys. Rep., 2014, 542: 133-193.

[30] P. Rosa, M. Tan, S. T. Le, I. D. Philips, J. D. Ania-Castañón, S. Sygletos, P. Harper. Unrepeatered DP-QPSK transmission over 352.8  km SMF using random DFB fiber laser amplification. IEEE Photon. Technol. Lett., 2015, 27: 1189-1192.

[31] M. Tan, P. Rosa, S. T. Le, M. A. Iqbal, I. Phillips, P. Harper. Transmission performance improvement using random DFB laser based Raman amplification and bidirectional second-order pumping. Opt. Express, 2016, 24: 2215-2221.

[32] D. Leandro, V. deMiguel Soto, R. A. Perez-Herrera, M. B. Acha, M. López-Amo. Random DFB fiber laser for remote (200  km) sensor monitoring using hybrid WDM/TDM. J. Lightwave Technol., 2016, 34: 4430-4436.

[33] S. Rota-Rodrigo, B. Gouhier, C. Dixneuf, L. Antoni-Micollier, G. Guiraud, D. Leandro, M. Lopez-Amo, N. Traynor, G. Santarelli. Watt-level green random laser at 532  nm by SHG of a Yb-doped fiber laser. Opt. Lett., 2018, 43: 4284-4287.

[34] W. Pan, L. Zhang, H. Jiang, X. Yang, S. Cui, Y. Feng. Ultrafast Raman fiber laser with random distributed feedback. Laser Photon. Rev., 2018, 12: 1700326.

[35] Z. Wang, H. Wu, M. Fan, L. Zhang, Y. Rao, W. Zhang, X. Jia. High power random fiber laser with short cavity length: theoretical and experimental investigations. IEEE J. Sel. Top. Quantum Electron., 2015, 21: 10-15.

[36] H. Zhang, L. Huang, J. Song, H. Wu, P. Zhou, X. Wang, J. Wu, J. Xu, Z. Wang, X. Xu, Y. Rao. Quasi-kilowatt random fiber laser. Opt. Lett., 2019, 44: 2613-2616.

[37] Z. Wang, P. Yan, Y. Huang, J. Tian, C. Cai, D. Li, Y. Yi, Q. Xiao, M. Gong. An efficient 4-kW level random fiber laser based on a tandem-pumping scheme. IEEE Photon. Technol. Lett., 2019, 31: 817-820.

[38] J. Xu, L. Huang, M. Jiang, J. Ye, P. Ma, J. Leng, J. Wu, H. Zhang, P. Zhou. Near-diffraction-limited linearly polarized narrow-linewidth random fiber laser with record kilowatt output. Photon. Res., 2017, 5: 350-354.

[39] E. A. Zlobina, S. I. Kablukov, S. A. Babin. Linearly polarized random fiber laser with ultimate efficiency. Opt. Lett., 2015, 40: 4074-4077.

[40] Z. Hu, R. Ma, X. Zhang, Z. Sun, X. Liu, J. Liu, K. Xie, L. Zhang. Weak feedback assisted random fiber laser from 45°-tilted fiber Bragg grating. Opt. Express, 2019, 27: 3255-3263.

[41] V. Balaswamy, S. Aparanji, S. Arun, S. Ramachandran, V. R. Supradeepa. High-power, widely wavelength tunable, grating-free Raman fiber laser based on filtered feedback. Opt. Lett., 2019, 44: 279-282.

[42] J. Ye, Y. Zhang, J. Xu, J. Song, T. Yao, H. Xiao, J. Leng, P. Zhou. Broadband pumping enabled flat-amplitude multi-wavelength random Raman fiber laser. Opt. Lett., 2020, 45: 1786-1789.

[43] X. Jin, Z. Lou, H. Zhang, J. Xu, P. Zhou, Z. Liu. Random distributed feedback fiber laser at 2.1  μm. Opt. Lett., 2016, 41: 4923-4926.

[44] X. P. Zeng, W. L. Zhang, R. Ma, Z. J. Yang, X. Zeng, X. Dong, Y. J. Rao. Regulation of a pulsed random fiber laser in the Q-switched regime. Laser Phys. Lett., 2016, 13: 115105.

[45] J. Xu, J. Ye, W. Liu, J. Wu, H. Zhang, J. Leng, P. Zhou. Passively spatiotemporal gain-modulation-induced stable pulsing operation of a random fiber laser. Photon. Res., 2017, 5: 598-603.

[46] R. Ma, Y. J. Rao, W. L. Zhang, B. Hu. Multimode random fiber laser for speckle-free imaging. IEEE J. Sel. Top. Quantum Electron., 2019, 25: 2833472.

[47] B. Redding, M. A. Choma, H. Cao. Speckle-free laser imaging using random laser illumination. Nat. Photonics, 2012, 6: 355-359.

[48] S. Sugavanam, M. Sorokina, D. V. Churkin. Spectral correlations in a random distributed feedback fibre laser. Nat. Commun., 2017, 8: 15514.

[49] M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, J. P. Woerdman. Helical-wavefront laser beams produced with a spiral phaseplate. Opt. Commun., 1994, 112: 321-327.

[50] Y. Shen, G. T. Campbell, B. Hage, H. Zou, B. C. Buchler, P. K. Lam. Generation and interferometric analysis of high charge optical vortices. J. Opt., 2013, 15: 044005.

[51] W. Huang, J. Li, H. Wang, J. Wang, S. Gao. Vortex electromagnetic waves generated by using a laddered spiral phase plate and a microstrip antenna. Electromagnetics, 2016, 36: 102-110.

[52] C. Wang, T. Liu, Y. Ren, Q. Shao, H. Dong. Generating optical vortex with large topological charges by spiral phase plates in cascaded and double-pass configuration. Optik, 2018, 171: 404-412.

[53] S. N. Khonina, A. V. Ustinov, V. I. Logachev, A. P. Porfirev. Properties of vortex light fields generated by generalized spiral phase plates. Phys. Rev. A, 2020, 101: 043829.

[54] M. S. Whalen, T. H. Wood. Effectively nonreciprocal evanescent-wave optical-fibre directional coupler. Electron. Lett., 1985, 21: 175-176.

[55] T. Wang, F. Wang, F. Shi, F. Pang, S. Huang, T. Wang, X. Zeng. Generation of femtosecond optical vortex beams in all-fiber mode-locked fiber laser using mode selective coupler. J. Lightwave Technol., 2017, 35: 2161-2166.

[56] H. Wan, J. Wang, Z. Zhang, Y. Cai, B. Sun, L. Zhang. High efficiency mode-locked, cylindrical vector beam fiber laser based on a mode selective coupler. Opt. Express, 2017, 25: 11444-11451.

[57] C. Dong, J. Zou, H. Wang, H. Yao, X. Zeng, Y. Bu, Z. Luo. Visible-light all-fiber vortex lasers based on mode selective couplers. Chin. Phys. B, 2020, 29: 094204.

Xiaoya Ma, Jun Ye, Yang Zhang, Jiangming Xu, Jian Wu, Tianfu Yao, Jinyong Leng, Pu Zhou. Vortex random fiber laser with controllable orbital angular momentum mode[J]. Photonics Research, 2021, 9(2): 02000266.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!