中国光学, 2019, 12 (1): 19, 网络出版: 2019-03-06   

紫外增强硅基成像探测器进展

Silicon-based ultraviolet photodetection: progress and prospects
作者单位
1 北京理工大学光电学院 纳米光子学与超精密光电系统北京市重点实验室, 北京 100081
2 华东光电集成器件研究所, 江苏 苏州 215163
3 中国兵器科学研究院, 北京 100089
4 北京理工大学 材料学院, 北京 100081
引用该论文

张猛蛟, 蔡毅, 江峰, 钟海政, 王岭雪. 紫外增强硅基成像探测器进展[J]. 中国光学, 2019, 12(1): 19.

ZHANG Meng-jiao, CAI Yi, JIANG Feng, ZHONG Hai-zheng, WANG Ling-xue. Silicon-based ultraviolet photodetection: progress and prospects[J]. Chinese Optics, 2019, 12(1): 19.

参考文献

[1] MENDE S B,HEETDERKS H,FREY H U,et al.. Far ultraviolet imaging from the IMAGE spacecraft.2.wideband FUV imaging[J]. Space Science Reviews,2000,91(1-2):271-285.

[2] LEITHERER C,VACCA W D,CONTI P S,et al.. Hubble space telescope ultraviolet imaging and spectroscopy of the bright starburst in the wolf-rayet galaxy NGC 4214[J]. Astrophysical Journal,1996,465(2):717-732.

[3] HORINOUCHI T,KOUYAMA T,LEE Y J,et al.. Mean winds at the cloud top of Venus obtained from two-wavelength UV imaging by Akatsuki[J]. Earth Planets & Space,2018,70(1):10.

[4] OKINO T,YAMAHIRA S,YAMADA S,et al.. A real-time ultraviolet radiation imaging system using an organic photoconductive image sensor[J]. Sensors,2018,18(1),doi:10.3390/S1B010314.

[5] STERGAARD J. UV imaging in pharmaceutical analysis[J]. Journal of Pharmaceutical & Biomedical Analysis,2018,147:140.

[6] NOVIKOVA A,CARSTENSEN J M,ZEITLER J A,et al.. Multispectral UV imaging for determination of the tablet coating thickness[J]. Journal of Pharmaceutical Sciences,2017,106(6):1560-1569.

[7] 周峰,郑国宪,闫锋,等.天基紫外预警技术发展现状及思考[J].航天返回与遥感,2012,33(6):39-44.

    ZHOU F,ZHENG G X,YAN F,et al.. Development status and thoughts of space-based UV warning technology[J]. Spacecraft Recovery & Remote Sensing,2012,33(6):39-44.(in Chinese)

[8] DING J,LI X,ZHU X,et al.. Solar-irradiated leakage of UV camera for daytime corona inspection[C]. Electrical Insulation and Dielectric Phenomena,2015:298-301.

[9] MCCLINTOCK W E,RUSCH D W,THOMAS G E,et al.. The cloud imaging and particle size experiment on the Aeronomy of ice in the mesosphere mission:instrument concept, design, calibration, and on-orbit performance[J]. Journal of Atmospheric and Solar-Terrestrial Physics,2009,71(3-4):340-355.

[10] 毛小洁.高功率皮秒紫外激光器新进展[J].中国光学,2015,8(2):182-190.

    MAO X J. New progress in high-power picosecond ultraviolet laser[J]. Chinese Optics,2015,8(2):182-190.(in Chinese)

[11] 周影,娄洪伟,周跃,等.微弱日盲紫外电晕自动实时检测方法[J].中国光学,2015,8(6):926-932.

    ZHOU Y,LOU H W,ZHOU Y,et al.. Automatic real-time detection method of faint solar-blind ultraviolet corona[J]. Chinese Optics,2015,8(6):926-932.

[12] 程宏昌,端木庆铎,石峰,等.双微通道板紫外像增强器工作特性研究[J].真空科学与技术学报,2013,33(6):524-527.

    CHENG H CH,DUANMU Q Z,SHI F,et al.. Characterization of solar blind double micro-channel plate ultraviolet image intensifier[J]. Chinese Journal of Vacuum Science & Technology,2013,33(6):524-527.(in Chinese)

[13] 黄钧良.MAMA紫外探测器系统与高增益MCP[J].红外技术,1997(4):33-35.

    HUANG J L. Evaluation of MAMA ultraviolet detectors and their applications[J]. Infrared Technology,1997(4):33-35.(in Chinese)

[14] YOSHIKAWA I. Ultraviolet detector with CMOS-coupled microchannel plates for future space missions[C]. Space Telescopes and Instrumentation 2016:Ultraviolet to Gamma Ray,2016:9905:99053G.

[15] JOSEPH C L,WOODGATE B E. UV imaging detectors:high-QE EBCMOS enabling new science missions[J]. American Astronomical Society,2011,43

[16] 尼启良.使用曲面微通道板和感应电荷位置灵敏阳极的软X射线-极紫外光子计数成像探测器研究[J].中国光学,2015,8(5):847-872.

    NI Q L. Soft X-ray and extreme ultraviolet photon-counting imaging detector with curved surface micro-channel plate and induced charge position-sensitive anode[J]. Chinese Optics,2015,8(5):847-872.(in Chinese)

[17] 卜绍芳,尼启良,何玲平,等.极紫外波段微通道板光子计数探测器[J].中国光学,2012,5(3):302-309.

    BU SH F,NI Q L,HE L P,et al.. Microchannel plate photon counting detector in UV range[J]. Chinese Optics,2012,5(3):302-309.(in Chinese)

[18] MONROY E,OMN S F,CALLE F. Topical review:wide-bandgap semiconductor ultraviolet photodetectors[J]. Semiconductor Science & Technology,2003,18(4):R33.

[19] ALAIE Z,NEJAD S M,YOUSEFI M H. Recent advances in ultraviolet photodetectors[J]. Materials Science in Semiconductor Processing,2015,29:16-55.

[20] GAMBINI S,SKUCHA K,LIU P,et al.. A CMOS 10kpixel baseline-free magnetic bead detector with column-parallel readout for miniaturized immunoassays[C]. Solid-State Circuits Conference Digest of Technical Papers,2012:126-128.

[21] MA B,SHANG Z,HU Y,et al.. Atmospheric seeing measurement from bright star trails with frame transfer CCDs[C]. SPIE Astronomical Telescopes & Instrumentation,2016:99060A.

[22] MA B,WANG L,BOGGS K,et al.. The test of the 10k×10k CCD for Antarctic Survey Telescopes(AST3)[J]. Ground-based and Airborne Instrumentation for Astronomy IV.Proceedings of the SPIE,2012,8446(8446):572-577.

[23] NIKZAD S,HOENK M,JEWELL A D,et al.. Single photon counting uv solar-blind detectors using silicon and III-nitride materials[J]. Sensors,2016,16(6):927.

[24] PALIK E D. Handbook of Optical Constants of Solids II[M]. Academic Press,1985.

[25] ASPNES D E,STUDNA A A. Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV[J]. Physical Review B,1983,27(2):985-1009.

[26] TALMI Y,SIMPSON R W. Self-scanned photodiode array: a multichannel spectrometric detector[J]. Applied Optics,1980,19(9):1401-1414.

[27] VOGT S S,TULL R G,KELTON P. Self-scanned photodiode array:high performance operation in high dispersion astronomical spectrophotometry[J]. Applied Optics,1978,17(4):574-592.

[28] STERN R A,CATURA R C,KIMBLE R,et al.. Ultraviolet and extreme ultraviolet response of charge-coupled-device detectors[J]. Optical Engineering,1987,26(9):875-883.

[29] MASAHARU M,HIROSHI A,KATSUMI S,et al.. Greater-than-90% QE in visible spectrum perceptible from UV to near-IR Hamamatsu thinned back-illuminated CCDs[J]. Solid State Sensor Arrays:Development and Applications,1997:2-9.

[30] HOENK M E,GRUNTHANER P J,GRUNTHANER F J,et al.. Growth of a delta-doped silicon layer by molecular beam epitaxy on a charge-coupled device for reflection-limited ultraviolet quantum efficiency[J]. Applied Physics Letters,1992,61(9):1084-1086.

[31] BLACKSBERG J,NIKZAD S,HOENK M E,et al.. Near-100% quantum efficiency of delta doped large-format UV-NIR silicon imagers[J]. IEEE Transactions on Electron Devices,2008,55(12):3402-3406.

[32] HYNECEK J. CCM-a new low-noise charge carrier multiplier suitable for detection of charge in small pixel CCD image sensors[J]. IEEE Transactions on Electron Devices,1992,39(8):1972-1975.

[33] JACQUOT B,MARTIN C,SCHIMINOVICH D,et al.. Delta-doped electron-multiplied CCD with absolute quantum efficiency over 50% in the near to far ultraviolet range for single photon counting applications[J]. Applied Optics,2012,51(3):365-369.

[34] PRYDDERCH M L,WALTHAM N R,MORRISSEY Q,et al.. A large-area CMOS monolithic active pixel sensor for extreme ultraviolet spectroscopy and imaging[J]. Proc SPIE,2004,5301:175-185.

[35] WALTHAM N R,PRYDDERCH M,MAPSON-MENARD H,et al.. Development of a thinned back-illuminated CMOS active pixel sensor for extreme ultraviolet spectroscopy and imaging in space science[J]. Nuclear Instruments & Methods in Physics Research,2007,573(1-2):250-252.

[36] HALAIN J P,MAZZOLI A,ROCHUS P,et al.. EUV high resolution imager on-board sOLAR oRBITer:optical design and detector performances[C]. International Conference on Space Optics ICSO2012,2012,10564:105643V.

[37] HALAIN J P,HERMANS L,MEYNANTS G. The dual-gain 10 μm back-thinned 3k×3k CMOS-APS detector of the solar orbiter extreme UV imager[J]. Proceedings of SPIE-The International Society for Optical Engineering,2014,9144:914431.

[38] KURODA R,KAWADA S,NASUNO S,et al.. A CMOS image sensor with 200-1 000 nm spectral response and high robustness to ultraviolet light exposure[J]. ITE Technical Report,2013,37:21-24.

[39] NASUNO S,WAKASHIMA S,KUSUHARA F,et al.. A CMOS image sensor with 240 μV/e-conversion gain, 200 ke-full well capacity, 190-1 000 nm spectral response and high robustness to UV light[J]. ITE Transactions on Media Technology and Applications,2016,4(2):116-122.

[40] HOENK M E,JONES T J,DICKIE M R,et al.. Delta-doped back-illuminated CMOS imaging arrays:progress and prospects[J]. Proceedings of SPIE-The International Society for Optical Engineering,2009,7419:74190T.

[41] HAMDEN E T,GREER F,HOENK M E,et al.. Ultraviolet antireflection coatings for use in silicon detector design[J]. Applied Optics,2011,50(21):4180-4188.

[42] HAMDEN E T,JEWELL A D,SHAPIRO C A,et al.. Charge-coupled devices detectors with high quantum efficiency at UV wavelengths[J]. Journal of Astronomical Telescopes Instruments & Systems,2016,2(3):036003.

[43] BLOUKE M M,COWENS M W,HALL J E,et al.. A UV sensitive CCD detector[C]. Electron Devices Meeting,1979 Internationa,1979:141-143.

[44] BLOUKE M M,COWENS M W,HALL J E,et al.. Ultraviolet downconverting phosphor for use with silicon CCD imagers[J]. Applied Optics,1980,19(19):3318-3321.

[45] COWENS M W,BLOUKE M M,FAIRCHILD T,et al.. Coronene and liumogen as VUV sensitive coatings for Si CCD imagers: a comparison[J]. Applied Optics,1980,19(22):3727-3728.

[46] VIEHMANN A W,BUTNER C L,COWENS M W. Ultraviolet/UV/sensitive phosphors for silicon imaging detectors[J]. Proceedings of SPIE-The International Society for Optical Engineering,1981,279(12):146-152.

[47] MORRISSEY P F,MCCANDLISS S R,FELDMAN P D,et al. Ultraviolet performance of a lumigen-coated CCD[J]. Bulletin of the American Astronomical Society,1991,23:1316.

[48] DAMENTO M A,BARCELLOS A A,SCHEMPP W V. Stability of lumogen films on CCDs[C]. IS&T/SPIE′s Symposium on Electronic Imaging: Science & Technology,1995:204-210.

[49] DESLANDES A,WEDDING A B,CLARKE S R,et al.. Characterization of PVD Lumogen films for wavelength conversion applications[C]. Smart Materials, Nano-, and Micro-Smart Systems,2005:616-626.

[50] 张大伟,田鑫,黄元申,等.CCD紫外敏感Lumogen薄膜制备与光谱表征[J].光谱学与光谱分析,2010,30(5):1171-1174.

    ZHANG D W,TIAN X,HUANG Y SH,et al.. Preparation and spectral characterization of Lumogen coatings for UV-responsive CCD image sensors[J]. Spectroscopy & Spectral Analysis,2010,30(5):1171-1174.(in Chinese)

[51] 杜晨光,孙利群,丁志田.利用晕苯增强CCD紫外响应的实验研究[J].光学技术,2010,36(5):753-757.

    DU CH G,SUN L Q,DING ZH T. Experiment study of enhancing CCD ultraviolet response using coronene[J]. Optical Technique,2010,36(5):753-757.(in Chinese)

[52] 何梁,张大伟,陶春先,等.旋涂法和热蒸发制备紫外CCD用晕苯薄膜的性能对比[J].光谱学与光谱分析,2014,34(5):1319-1322.

    HE L,ZHANG D W,TAO CH X,et al.. Performance comparison of coronene film for UV-CCD prepared by spin-coating and physical vapor deposition[J]. Spectroscopy & Spectral Analysis,2014,34(5):1319-1322.(in Chinese)

[53] 姜霖,张大伟,陶春先,等.紫外增强Lumogen薄膜旋涂法制备及其性能表征[J].光谱学与光谱分析,2013,33(2):468-470.

    JIANG L,ZANG D W,TAO CH X,et al. Preparation by spin-coating technology and characterization of UV-enhanced Lumogen film[J]. Spectroscopy & Spectral Analysis,2013,33(2):468-470.(in Chinese)

[54] 冯宇祥,孟银霞,张国玉,等.CCD紫外增强薄膜旋涂法工艺优化[J].光谱学与光谱分析,2017,37(9):2826-2831.

    FENG Y X,MENG Y X,ZHANG G Y,et al.. Process optimization of CCD UV-responsive sensitivity enhancement by spin-coating[J]. Spectroscopy & Spectral Analysis,2017,37(9):2826-2831.(in Chinese)

[55] 刘琼,马守宝,钱晓晨,等.CMOS传感器紫外敏化膜层的厚度优化及其光电性能测试[J].光子学报,2017,46(6):225-230.

    LIU Q,MA SH B,QIAN X CH,et al.. Thickness optimization and photoelectric performance test of UV sensitized film of CMOS sensor[J]. Acta Photonica Sinica,2017,46(6):225-230.(in Chinese)

[56] FRANKS W A R,KIIK M J,NATHAN A. UV-responsive CCD image sensors with enhanced inorganic phosphor coatings[J]. IEEE Transactions on Electron Devices,2003,50(2):352-358.

[57] 刘猛,张大伟,谢品,等.增强光电图像传感器紫外探测薄膜的制备[J].仪表技术与传感器,2009,30(9):12-14.

    LIU M,ZHANG D W,XIE P,et al.. Investigation in UV-enhanced coatings based on Zn2SiO4:Mn for image sensors[J]. Instrument Technique & Sensor,2009,30(9):12-14.(in Chinese)

[58] SHENG X,YU C,MALYARCHUK V,et al.. Photodetectors:silicon-based visible-blind ultraviolet detection and imaging using down-shifting luminophores[J]. Advanced Optical Materials,2014,2(4):314-319.

[59] TAI Y,LI X,PAN B. Efficient near-infrared down conversion in Nd3+-Yb3+ co-doped transparent nanostructured glass ceramics for photovoltaic application[J]. Journal of Luminescence,2018,195:102-108.

[60] SONG Y,YOU H,HUANG Y,et al.. Highly uniform and monodisperse Gd(2)O(2)S:Ln(3+)(Ln=Eu,Tb) submicrospheres: solvothermal synthesis and luminescence properties[J]. Inorganic Chemistry,2010,49(24):11499-11504.

[61] STRMPEL C,MCCANN M,BEAUCARNE G,et al.. Modifying the solar spectrum to enhance silicon solar cell efficiency-an overview of available materials[J]. Solar Energy Materials & Solar Cells,2007,91(4):238-249.

[62] ARQUER FPGD,ARMIN A,MEREDITH P,et al. Corrigendum:solution-processed semiconductors for next-generation photodetectors[J]. Nature Reviews Materials,2017,2(3):16100.

[63] HAN H V,LU A Y,LU L S,et al.. Photoluminescence enhancement and structure repairing of monolayer MoSe2 by hydrohalic acid treatment[J]. Acs Nano,2016,10(1):1454-1461.

[64] KAGAN C R,LIFSHITZ E,SARGENT E H,et al.. Building devices from colloidal quantum dots[J]. Science,2016,353(6302):885.

[65] GEYER S M,SCHERER J M,MOLOTO N,et al.. Efficient luminescent down-shifting detectors based on colloidal quantum dots for dual-band detection applications[J]. Acs Nano,2011,5(7):5566-5571.

[66] JIANG L,SUN H,XU B,et al.. The spectrum of quantum dots film for UV CCD[J]. Journal of Spectroscopy,2013:1-5.

[67] BHASKARAN S. First report on quantum dot coated CMOS CID arrays for the UV and VUV[J]. Proceedings of SPIE-The International Society for Optical Engineering,2013,8859(10):1877-1889.

[68] KOVALENKO M V,PROTESESCU L,BODNARCHUK M I. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals[J]. Science,2017,358(6364):745-750.

[69] ZHOU Q C,BAI Z L,LU W G,et al.. In situ fabrication of halide perovskite nanocrystal-embedded polymer composite films with enhanced photoluminescence for display backlights[J]. Advanced Materials,2016,28(41):9163-9168.

[70] ZHANG M,WANG L,MENG L,et al.. Perovskite quantum dots embedded composite films enhancing UV response of silicon photodetectors for broadband and solar-blind light detection[J]. Advanced Optical Materials,2018:1800077.

[71] LIU Y,WEISS NO,DUAN X,et al.. Van der Waals heterostructures and devices[J]. Nature Reviews Materials,2016,1(9):16042.

[72] CHHOWALLA M,JENA D,ZHANG H. Two-dimensional semiconductors for transistors[J]. Nature Reviews Materials,2016,1(11):16052.

[73] SUN Z,MARTINEZ A,WANG F. Optical modulators with 2D layered materials[J]. Nature Photonics,2016,10(4):227-238.

[74] ELKADY M F,SHAO Y,KANER R B. Graphene for batteries, supercapacitors and beyond[J]. Nature Reviews Materials,2016,1(7):16033.

[75] WANG Y M,DING K,SUN B Q,et al.. Two-dimensional layered material/silicon heterojunctions for energy and optoelectronic applications[J]. Nano Research,2016,9(1):72-93.

[76] LI G,LIU L,WU G,et al.. Self-powered UV-near infrared photodetector based on reduced graphene oxide/n-Si vertical heterojunction[J]. Small,2016,12(36):5019-5026.

[77] GUO X C,HAO N H,GUO D Y,et al.. β -Ga2O3/p-Si heterojunction solar-blind ultraviolet photodetector with enhanced photoelectric responsivity[J]. Journal of Alloys & Compounds,2016,660:136-140.

[78] ZHANG Y,YU Y,MI L,et al.. In situ fabrication of vertical multilayered MoS2/Si homotype heterojunction for high-speed visible-near-infrared photodetectors[J]. Small,2016,12(8):1062-1071.

[79] LOU Z,ZENG L,WANG Y,et al.. High-performance MoS2/Si heterojunction broadband photodetectors from deep ultraviolet to near infrared[J]. Optics Letters,2017,42(17):3335-3338.

[80] JI T,LIU Q,ZOU R,et al.. An interface engineered multicolor photodetector based on n-Si(111)/TiO2 nanorod array heterojunction[J]. Advanced Functional Materials,2016,26(9):1400-1410.

[81] LING C C,GUO T C,LU W B,et al. Ultrahigh photosensitivity and detectivity of hydrogen-treated TiO2 nanorod array/SiO2/Si heterojunction broadband photodetectors and its mechanism[J]. Journal of Materials Chemistry C,2018,6(9):2319-2328.

[82] FLEMBAN T H,HAQUE M A,AJIA I A,et al.. A photodetector based on p-Si/n-ZnO nanotube heterojunctions with high ultraviolet responsivity[J]. Acs Applied Materials & Interfaces,2017,9(42):37120-37127.

[83] ZHANG H,ZHANG X,LIU C,et al.. High-responsivity, high-detectivity, ultrafast topological insulator Bi2Se3/silicon heterostructure broadband photodetectors[J]. Acs Nano,2016,10(5):5113-5122.

[84] YAO J D,ZHENG Z Q,SHAO J M,et al.. Stable, highly-responsive and broadband photodetection based on large-area multilayered WS2 films grown by pulsed-laser deposition[J]. Nanoscale,2015,7(36):14974-14981.

[85] YAO J,SHAO J,WANG Y,et al.. Ultra-broadband and high response of the Bi2Te3-Si heterojunction and its application as a photodetector at room temperature in harsh working environments[J]. Nanoscale,2015,7(29):12535-12541.

[86] LEE GH,CUI X,KIM P. Atomically thin p-n junctions with van der Waals heterointerfaces[J]. Nature Nanotechnology,2014,9(9):676-681.

[87] GOOSSENS S,NAVICKAITE G,MONASTERIO C,et al.. Broadband image sensor array based on graphene CMOS integration[J]. Nature Photonics,2017,11(6):366-371.

[88] 阮宁娟,苏云.国外紫外空间探测器发展综述[J].航天返回与遥感,2008,29(3):71-78.

    RUAN N J,SU Y. Summarization of overseas space ultraviolet instrument development[J]. Spacecraft Recovery & Remote Sensing,2008,29(3):71-78.(in Chinese)

[89] 张燕,龚海梅,白云,等.空间用紫外探测及AlGaN探测器的研究进展[J].激光与红外,2006,36(11):1009-1012.

    ZHANG Y,GONG H M,BAI Y,et al. UV detection applied to space and the research development of AlGaN detector[J]. Laser & Infrared,2006,36(11):1009-1012.(in Chinese)

[90] GLADSTONE G R,PERSYN S C,ETERNO J S,et al.. The ultraviolet spectrograph on NASA′s Juno mission[J]. Space Science Reviews,2017,213:1-27.

[91] MENDE S B,FREY H U,RIDER K,et al. The far ultraviolet imager on the icon mission[J]. Space Science Reviews,2017,212:1-42.

[92] MCMASTER M,AL E. Wide Field and Planetary Camera 2 Instrument Handbook v. 10.0[M]. Wide Field & Planetary Camera Hst Instrument Handbook,2008.

[93] DRESSEL L. Wide Field Camera 3 Instrument Handbook for Cycle 21 v. 5.0[M]. Wide Field Camera 3,HST Instrument Handbook,2012.

[94] KHAN A R,CHORDIA P,GANDORFER A M. The solar ultraviolet imaging telescope onboard aditya-L1[C]. SPIE Astronomical Telescopes and Instrumentation,2016:990504.

[95] KLUKKERT M,WU J X,RANTANEN J,et al.. Rapid assessment of tablet film coating quality by multispectral UV imaging[J]. Aaps Pharmscitech,2016,17(4):958-967.

[96] 石峰,程宏昌,闫磊,等.紫外探测技术[M].北京:国防工业出版社,2017.

    SHI F,CHENG H CH,YAN L. UV Detection Tchnique[M]. Beijing:National Defense Industry Press,2017.(in Chinese)

[97] PRATT H,HASSANIN K,TROUGHTON L D,et al.. UV imaging reveals facial areas that are prone to skin cancer are disproportionately missed during sunscreen application[J]. Plos One,2017,12(10):e0185297.

[98] LI Y,WANG T,GUO L,et al.. Detection and analysis of high voltage electrical equipment corona discharge based on ultraviolet imaging technology[C]. Control and Decision Conference,2017:6928-6931.

[99] 叶柏松,袁永刚,王继强,等.一种便携式电晕检测紫外相机的设计[J].红外,2013,34(4):24-27.

    YE B S,YUAN Y G,WANG J Q,et al.. Design of a portable UV camera for corona detection[J]. Infrared,2013,34(4):24-27.(in Chinese)

[100] 刘建卓,王学进,黄剑波,等.三波段电晕检测光学系统的设计[J].光学 精密工程,2011,19(6):1228-1234.

    LIU J ZH,WANG X J,HUANG J B,et al.. Design of three-band optical system used in corona detection[J]. Opt. Precision Eng.,2011,19(6):1228-1234.(in Chinese)

[101] 张洁.机载导弹逼近告警技术发展分析[J].舰船电子工程,2014,34(11):19-23.

    ZHANG J. Development and analysis of airborne missile warning technology[J]. Ship Electronic Engineering,2014,34(11):19-23.(in Chinese)

[102] THOMPSON N J,WILSON M W,CONGREVE D N,et al.. Energy harvesting of non-emissive triplet excitons in tetracene by emissive PbS nanocrystals[J]. Nature Materials,2014,13(11):1039-1043.

[103] SONI A,PUROHIT S,HEGDE R S. Multilayered aluminum plasmonic metasurfaces for ultraviolet bandpass filtering[J]. IEEE Photonics Technology Letters,2017,29(1):110-113.

[104] MACKENTY J W. A near ultraviolet solar-blind telescope design using silicon CCD detectors[C]. Space Telescopes and Instrumentation 2016:Ultraviolet to Gamma Ray,2016:990538.

[105] LI W D,CHOU S Y. Solar-blind deep-UV band-pass filter(250-350 nm) consisting of a metal nano-grid fabricated by nanoimprint lithography[J]. Optics Express,2010,18(2):931-937.

张猛蛟, 蔡毅, 江峰, 钟海政, 王岭雪. 紫外增强硅基成像探测器进展[J]. 中国光学, 2019, 12(1): 19. ZHANG Meng-jiao, CAI Yi, JIANG Feng, ZHONG Hai-zheng, WANG Ling-xue. Silicon-based ultraviolet photodetection: progress and prospects[J]. Chinese Optics, 2019, 12(1): 19.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!