光学学报, 2017, 37 (7): 0714002, 网络出版: 2017-07-10  

固体激光器中正交偏振模式间增益竞争的研究

Gain Competition Between Orthogonally Polarized Modes in Solid-State Lasers
作者单位
1 北京理工大学光电学院, 北京 100081
2 精密光电测试仪器及技术北京市重点实验室, 北京 100081
引用该论文

程丽君, 杨苏辉, 赵长明, 张海洋. 固体激光器中正交偏振模式间增益竞争的研究[J]. 光学学报, 2017, 37(7): 0714002.

Cheng Lijun, Yang Suhui, Zhao Changming, Zhang Haiyang. Gain Competition Between Orthogonally Polarized Modes in Solid-State Lasers[J]. Acta Optica Sinica, 2017, 37(7): 0714002.

参考文献

[1] He T, Yang S H, Zhao C M, et al. High power amplification of tunable optically carried RF signals by a diode pumped Yb3+doped LMA silicon fiber[J]. Laser Physics Letters, 2015, 12(3): 035101.

[2] Zheng Z, Zhao C M, Zhang H Y, et al. Phase noise reduction by using dual-frequency laser in coherent detection[J]. Optics & Laser Technology, 2016, 80: 169-175.

[3] Kang Y, Cheng L J, Yang S H, et al. 50 W low noise dual-frequency laser fiber power amplifier[J]. Optics Express, 2016, 24(9): 9202-9208.

[4] Brunel M, Bretenaker F, Floch A L. Tunable optical microwave source using spatially resolved laser eigenstates[J]. Optics Letters, 1997, 22(6): 384-386.

[5] Loas G, Romanelli M, Alouini M. Dual-frequency 780 nm Ti:Sa laser for high spectral purity tunable CW THz generation[J]. IEEE Photonics Technology Letters, 2014, 26(15): 1518-1521.

[6] Danion G, Hamel C, Frein L, et al. Dual frequency laser with two continuously and widely tunable frequencies for optical referencing of GHz to THz beatnotes[J]. Optics Express, 2014, 22(15): 17673-17678.

[7] Rolland A, Frein L, Vallet M, et al. 40 GHz photonic synthesizer using a dual-polarization microlaser[J]. IEEE Photonics Technology Letters, 2010, 22(23): 1738-1740.

[8] Brunel M, Emile O, Bretenaker F, et al. Tunable two-frequency lasers for lifetime measurements[J]. Optical Review, 1997, 4(5): 550-552.

[9] 李 磊, 赵长明, 张 鹏, 等. 激光二极管抽运频差可调谐双频固体激光器的研究[J]. 物理学报, 2007, 56(5): 2663-2669.

    Li Lei, Zhao Changming, Zhang Peng, et al. The study on diode-pumped two-frequency solid-state laser with tunable frequency difference[J]. Acta Physica Sinica, 2007, 56(5): 2663-2669.

[10] Otsuka K, Mandel P, Bielawski S, et al. Alternate time scale in multimode lasers[J]. Physics Review A, 1992, 46(3): 1692-1695.

[11] Sargent III M, Scully M O, Lamb W E. Laser physics[M]. 6th ed. Oxford: Westview Press, 1993: 96.

[12] Brunel M, Amon A, Vallet M. Dual-polarization microchip laser at 1.53 μm[J]. Optics Letters, 2005, 30(18): 2418-2420.

[13] Lacot E, Stoeckel F. Nonlinear mode coupling in a microchip laser[J]. Journal of the Optical Society of America B, 1996, 13(9): 2034-2040.

[14] Tang C L, Statz H, Demars G. Spectral output and spiking behavior of solid-state lasers[J]. Journal of Applied Physics, 1963, 34(8): 2289-2295.

[15] Wiesenfeld K, Bracikowski C, James G, et al. Observation of antiphase states in a multimode laser[J]. Physical Review Letters, 1990, 65(14): 1749-1752.

[16] Park J D, Mkay A, Dawes J M. Effect of gain anisotropy on low-frequency dynamics in four-level solid-state lasers[J]. Optics Express, 2009, 17(8): 6053-6058.

程丽君, 杨苏辉, 赵长明, 张海洋. 固体激光器中正交偏振模式间增益竞争的研究[J]. 光学学报, 2017, 37(7): 0714002. Cheng Lijun, Yang Suhui, Zhao Changming, Zhang Haiyang. Gain Competition Between Orthogonally Polarized Modes in Solid-State Lasers[J]. Acta Optica Sinica, 2017, 37(7): 0714002.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!