Photonics Research, 2019, 7 (6): 06000664, Published Online: May. 29, 2019   

Direct modulation characteristics of microdisk lasers with InGaAs/GaAs quantum well-dots

Author Affiliations
1 St. Petersburg Academic University, Khlopina 8/3, St. Petersburg, 194021, Russia
2 Ioffe Institute of RAS, Politehnicheskaya 26, St. Petersburg, 194021, Russia
3 Institute for Physics of Microstuctures of RAS, Nizhny Novgorod, 603950, Russia
4 ITMO University, Kronverkskiy prospekt 49, St. Petersburg, 197101, Russia
5 University of Notre Dame, Notre Dame, Indiana 46556, USA
Copy Citation Text

N. V. Kryzhanovskaya, E. I. Moiseev, F. I. Zubov, A. M. Mozharov, M. V. Maximov, N. A. Kalyuzhnyy, S. A. Mintairov, M. M. Kulagina, S. A. Blokhin, K. E. Kudryavtsev, A. N. Yablonskiy, S. V. Morozov, Yu. Berdnikov, S. Rouvimov, A. E. Zhukov. Direct modulation characteristics of microdisk lasers with InGaAs/GaAs quantum well-dots[J]. Photonics Research, 2019, 7(6): 06000664.

References

[1] C. G. B. Garrett, W. Kaiser, W. L. Bond. Stimulated emission into optical whispering gallery modes of spheres. Phys. Rev., 1961, 124: 1807-1809.

[2] A. F. J. Levi, R. E. Slusher, S. L. McCall, T. Tanbuk-Ek, D. L. Coblentz, S. J. Perton. Room temperature operation of microdisc lasers with submilliamp threshold current. Electron. Lett., 1992, 28: 1010-1012.

[3] HofrichterJ.RazO.KeyvaniniaS.de VriesT.DorrenH. J. S.MorfT.OffreinB. J., “High-speed direct-modulation of InP microdisk lasers,” in 39th European Conference and Exhibition on Optical Communication (ECOC) (2013), Paper We.1.B.5.

[4] X. M. Lv, Y. Z. Huang, L. X. Zou, H. Long, Y. Du. Optimization of direct modulation rate for circular microlasers by adjusting mode Q factor. Laser Photon. Rev., 2013, 7: 818-829.

[5] L.-X. Zou, Y.-Z. Huang, B.-W. Liu, X.-M. Lv, X.-W. Ma, Y.-D. Yang, J.-L. Xiao, Y. Du. Thermal and high speed modulation characteristics for AlGaInAs/InP microdisk lasers. Opt. Express, 2015, 23: 2879-2888.

[6] A. K. Sokol, R. P. Sarzala. Comparative analysis of thermal problems in GaAs- and InP-based 1.3-μm VECSELs. Opt. Appl., 2013, 43: 325-341.

[7] N. V. Kryzhanovskaya, M. V. Maximov, S. A. Blokhin, M. A. Bobrov, M. M. Kulagina, S. I. Troshkov, Y. M. Zadiranov, A. A. Lipovskii, E. I. Moiseev, Y. V. Kudashova, D. A. Livshits, V. M. Ustinov, A. E. Zhukov. Microdisk injection lasers for the 1.27-μm spectral range. Semiconductors, 2016, 50: 390-393.

[8] KageyamaT.NishiK.YamaguchiM.MochidaR.MaedaY.TakemasaK.TanakaY.YamamotoT.SugawaraM.ArakawaY., “Extremely high temperature (220°C) continuous-wave operation of 1300-nm-range quantum-dot lasers,” in Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO/EQEC), OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDA_1.

[9] M. Ishida, N. Hatori, K. Otsubo, T. Yamamoto, Y. Nakata, H. Ebe, M. Sugawara, Y. Arakawa. Low-driving-current temperature-stable 10 Gbit/s operation of p-doped 1.3  μm quantum dot lasers between 20 and 90°C. Electron. Lett., 2007, 43: 219-221.

[10] L. Zhang, E. Hu. Lasing from InGaAs quantum dots in an injection microdisk. Appl. Phys. Lett., 2003, 82: 319-321.

[11] M. Munsch, J. Claudon, N. S. Malik, K. Gilbert, P. Grosse, J.-M. Gerard, F. Albert, F. Langer, T. Schlereth, M. M. Pieczarka, S. Hofling, M. Kamp, A. Forchel, S. Reitzenstein. Room temperature, continuous wave lasing in microcylinder and microring quantum dot laser diodes. Appl. Phys. Lett., 2012, 100: 031111.

[12] N. V. Kryzhanovskaya, E. I. Moiseev, Y. V. Kudashova, F. I. Zubov, A. A. Lipovskii, M. M. Kulagina, S. I. Troshkov, Y. M. Zadiranov, D. A. Livshits, M. V. Maximov, A. E. Zhukov. Continuous-wave lasing at 100°C in 1.3  μm quantum dot microdisk diode laser. Electron. Lett., 2015, 51: 1354-1355.

[13] A. Fiore, M. Rossetti, B. Alloing, C. Paranthoen, J. X. Chen, L. Geelhaar, H. Riechert. Carrier diffusion in low-dimensional semiconductors: a comparison of quantum wells, disordered quantum wells, and quantum dots. Phys. Rev. B, 2004, 70: 205311.

[14] D. Ouyang, N. N. Ledentsov, D. Bimberg, A. R. Kovsh, A. E. Zhukov, S. S. Mikhrin, V. M. Ustinov. High performance narrow stripe quantum-dot lasers with etched waveguide. Semicond. Sci. Technol., 2003, 18: L53-L54.

[15] Y. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. Huang, Z. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, J. E. Bowers. 1.3  μm submilliamp threshold quantum dot micro-lasers on Si. Optica, 2017, 4: 940-944.

[16] N. V. Kryzhanovskaya, E. I. Moiseev, Y. S. Polubavkina, M. V. Maximov, D. V. Mokhov, I. A. Morozov, M. M. Kulagina, Y. M. Zadiranov, A. A. Lipovskii, M. Tang, M. Liao, J. Wu, S. Chen, H. Liu, A. E. Zhukov. Elevated temperature lasing from injection microdisk lasers on silicon. Laser Phys. Lett., 2018, 15: 015802.

[17] Y. Wan, D. Inoue, D. Jung, J. C. Norman, C. Shang, A. C. Gossard, J. E. Bowers. Directly modulated quantum dot lasers on silicon with a milliampere threshold and high temperature stability. Photon. Res., 2018, 6: 776-781.

[18] M. V. Maximov, N. V. Kryzhanovskaya, A. M. Nadtochiy, E. I. Moiseev, I. I. Shostak, A. A. Bogdanov, Z. F. Sadrieva, A. E. Zhukov, A. A. Lipovskii, D. V. Karpov, J. Laukkanen, J. Tommila. Ultrasmall microdisk and microring lasers based on InAs/InGaAs/GaAs quantum dots. Nanoscale Res. Lett., 2014, 9: 657.

[19] F. Grillot, B. Dagens, J.-G. Provost, H. Su, L. F. Lester. Gain compression and above-threshold linewidth enhancement factor in 1.3-μm InAs-GaAs quantum-dot lasers. IEEE J. Quantum Electron., 2008, 44: 946-951.

[20] D.-Y. Cong, A. Martinez, K. Merghem, A. Ramdane, J.-G. Provost, M. Fischer, I. Krestnikov, A. Kovsh. Temperature insensitive linewidth enhancement factor of p-type doped InAs/GaAs quantum-dot lasers emitting at 1.3  μm. Appl. Phys. Lett., 2008, 92: 191109.

[21] A. E. Zhukov, M. V. Maximov, N. Y. Gordeev, A. V. Savelyev, D. A. Livshits, A. R. Kovsh. Quantum dot lasers with controllable spectral and modal characteristics. Semicond. Sci. Technol., 2011, 26: 014004.

[22] S. A. Mintairov, N. A. Kalyuzhnyy, M. V. Maximov, A. M. Nadtochiy, S. Rouvimov, A. E. Zhukov. GaAs quantum well-dots solar cells with spectral response extended to 1100  nm. Electron. Lett., 2015, 51: 1602-1604.

[23] S. A. Mintairov, N. A. Kalyuzhnyy, M. V. Maximov, A. M. Nadtochiy, A. E. Zhukov. InGaAs quantum well-dots based GaAs subcell with enhanced photocurrent for multijunction GaInP/GaAs/Ge solar cells. Semicond. Sci. Technol., 2017, 32: 015006.

[24] S. A. Mintairov, N. A. Kalyuzhnyy, V. M. Lantratov, M. V. Maximov, A. M. Nadtochiy, S. Rouvimov, A. E. Zhukov. Hybrid InGaAs quantum well-dots nanostructures for light-emitting and photo-voltaic applications. Nanotechnology, 2015, 26: 385202.

[25] E. Moiseev, N. Kryzhanovskaya, M. Maximov, F. Zubov, A. Nadtochiy, M. Kulagina, Y. Zadiranov, N. Kalyuzhnyy, S. Mintairov, A. Zhukov. Highly efficient injection microdisk lasers based on quantum well-dots. Opt. Lett., 2018, 43: 4554-4557.

[26] P. Jaffrennou, J. Claudon, M. Bazin, N. S. Malik, S. Reitzenstein, L. Worschech, M. Kamp, A. Forchel, J.-M. Gerard. Whispering gallery mode lasing in high quality GaAs/AlAs pillar microcavities. Appl. Phys. Lett., 2010, 96: 071103.

[27] ColdrenL. A.CorzineS. W.MasanovicM. L., Diode Lasers and Photonic Integrated Circuits, 2nd ed. (Wiley, 2012).

[28] X. M. Lv, Y. Z. Huang, Y. D. Yang, L. X. Zou, H. Long, B. W. Liu, J. L. Xiao, Y. Du. Influences of carrier diffusion and radial mode field pattern on high speed characteristics for microring lasers. Appl. Phys. Lett., 2014, 104: 161101.

[29] H. Su, L. F. Lester. Dynamic properties of quantum dot distributed feedback lasers: high speed, linewidth and chirp. J. Phys. D, 2005, 38: 2112-2118.

[30] KaponE., ed., Semiconductor Lasers: Fundamentals (Academic, 1999).

[31] P. Bhattacharya, D. Klotzkin, O. Qasaimeh, W. Zhou, S. Krishna, D. Zhu. High-speed modulation and switching characteristics of In(Ga)As-Al(Ga)As self-organized quantum-dot lasers. IEEE J. Sel. Top. Quantum Electron., 2000, 6: 426-438.

[32] M. Ishida, N. Hatori, T. Akiyama, K. Otsubo, Y. Nakata, H. Ebe, M. Sugawara, Y. Arakawa. Photon lifetime dependence of modulation efficiency and K factor in 1.3  μm self-assembled InAs/GaAs quantum-dot lasers: Impact of capture time and maximum modal gain on modulation bandwidth. Appl. Phys. Lett., 2004, 85: 4145-4147.

[33] A. Fiore, A. Markus. Differential gain and gain compression in quantum-dot lasers. IEEE J. Quantum Electron., 2007, 43: 287-294.

[34] A. N. AL-Omari, I. K. AL-Kofahi, K. L. Lear. Fabrication, performance and parasitic parameter extraction of 850  nm high-speed vertical-cavity lasers. Semicond. Sci. Technol., 2009, 24: 095024.

[35] Q. H. Song. Emerging opportunities for ultra-high Q whispering gallery mode microcavities. Sci. China: Phys. Mech. Astron., 2019, 62: 074231.

N. V. Kryzhanovskaya, E. I. Moiseev, F. I. Zubov, A. M. Mozharov, M. V. Maximov, N. A. Kalyuzhnyy, S. A. Mintairov, M. M. Kulagina, S. A. Blokhin, K. E. Kudryavtsev, A. N. Yablonskiy, S. V. Morozov, Yu. Berdnikov, S. Rouvimov, A. E. Zhukov. Direct modulation characteristics of microdisk lasers with InGaAs/GaAs quantum well-dots[J]. Photonics Research, 2019, 7(6): 06000664.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!