中国激光, 2019, 46 (8): 0801001, 网络出版: 2019-08-13   

百瓦级环形非稳腔板条激光器腔内校正 下载: 1001次

Intra-Cavity Aberration Compensation in 100 W-Order Unstable Ring Slab Lasers
王勋 1,2,3赖柏衡 1,2董理治 1,2,**杨平 1,2,*陈善球 1,2王帅 1,2许冰 1,2
作者单位
1 中国科学院自适应光学重点实验室, 四川 成都 610209
2 中国科学院光电技术研究所, 四川 成都 610209
3 中国科学院大学, 北京 100049
引用该论文

王勋, 赖柏衡, 董理治, 杨平, 陈善球, 王帅, 许冰. 百瓦级环形非稳腔板条激光器腔内校正[J]. 中国激光, 2019, 46(8): 0801001.

Xun Wang, Boheng Lai, Lizhi Dong, Ping Yang, Shanqiu Chen, Shuai Wang, Bing Xu. Intra-Cavity Aberration Compensation in 100 W-Order Unstable Ring Slab Lasers[J]. Chinese Journal of Lasers, 2019, 46(8): 0801001.

参考文献

[1] 周寿桓, 阎吉祥, 冯国英. 高平均功率高光束质量全固态激光器[M]. 北京: 国防工业出版社, 2016: 1- 15.

    Zhou SH, Yan JX, Feng GY. DPSSL with high-average-power fine-beam-quality[M]. Beijing, China: National Defense Industry Press, 2016: 1- 15.

[2] Tulloch WM, Rutherford TS, Gustafson EK, et al. A 100 W edge-pumped Nd∶YAG conduction-cooled slab laser[C]∥Advanced Solid State Lasers, January 31-February 3, 1999, Boston, Massachusetts. Washington, D. C.: OSA, 2001: MA4.

[3] Yu X, Dong L Z, Lai B H, et al. Automatic low-order aberration correction based on geometrical optics for slab lasers[J]. Applied Optics, 2017, 56(6): 1730-1739.

[4] InjeyanH, Goodno G D. High-power laser handbook[M]. New York: Mc Graw Hill Companies, 2011: 1-77, 176- 222.

[5] 王君涛, 童立新, 徐浏, 等. 5 kW Nd∶YAG端面抽运板条激光器及其光束质量提升[J]. 中国激光, 2018, 45(1): 0101003.

    Wang J T, Tong L X, Xu L, et al. 5 kW end-pumped Nd∶YAG slab lasers and beam quality improvement[J]. Chinese Journal of Lasers, 2018, 45(1): 0101003.

[6] 季林涛, 邹岩, 李之通, 等. 改善Nd∶YAG掠入射板条激光器增益介质热效应的研究[J]. 中国激光, 2017, 44(11): 1101005.

    Ji L T, Zou Y, Li Z T, et al. Improvement of gain medium thermal effect in Nd∶YAG grazing incidence slab laser[J]. Chinese Journal of Lasers, 2017, 44(11): 1101005.

[7] 李晋闽. 高平均功率全固态激光器发展现状、趋势及应用[J]. 激光与光电子学进展, 2008, 45(7): 16-29.

    Li J M. Development, trend and application of high average power diode pumped lasers[J]. Laser & Optoelectronics Progress, 2008, 45(7): 16-29.

[8] 刘泽金, 周朴, 许晓军. 对百千瓦级全固态激光相干阵列系统的分析[J]. 激光与光电子学进展, 2010, 47(1): 011402.

    Liu Z J, Zhou P, Xu X J. 100 kW level LD pumped coherent laser array system[J]. Laser & Optoelectronics Progress, 2010, 47(1): 011402.

[9] 周寿桓, 赵鸿, 唐小军. 高平均功率全固态激光器[J]. 中国激光, 2009, 36(7): 1605-1618.

    Zhou S H, Zhao H, Tang X J. High average power laser diode pumped solid-state laser[J]. Chinese Journal of Lasers, 2009, 36(7): 1605-1618.

[10] 陈金宝, 郭少锋. 高能固态激光器技术路线分析[J]. 中国激光, 2013, 40(6): 0602006.

    Chen J B, Guo S F. Review on technical approaches of high energy solid-state lasers[J]. Chinese Journal of Lasers, 2013, 40(6): 0602006.

[11] 任国光, 黄裕年. 二极管抽运固体激光器迈向100 kW[J]. 激光与红外, 2006, 36(8): 617-622.

    Ren G G, Huang Y N. Diode pumped solid-state laser stride forward 100 kW[J]. Laser & Infrared, 2006, 36(8): 617-622.

[12] Avizonis PV, Bossert DJ, Curtin MS, et al. Physics of high performance Yb∶YAG thin disk lasers[C]∥Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, May 31-June 5, 2009, Baltimore, Maryland, United States. Washington, D. C.: OSA, 2009: CThA2.

[13] 苏华. 非稳腔式高能固体激光器中的耦合动力学研究[D]. 绵阳: 中国工程物理研究院, 2015: 1- 19.

    SuH. Study on coupling dynamics in high-power solid state lasers with unstable cavity[D]. Mianyang: China Academy of Engineering Physics, 2015: 1- 9.

[14] Oughstun K E. Intracavity adaptive optic compensation of phase aberrations I: analysis[J]. Journal of the Optical Society of America, 1981, 71(7): 862-872.

[15] Freiberg R J, Chenausky P P, Buczek C J. CO2 unstable confocal ring resonators[J]. IEEE Journal of Quantum Electronics, 1972, 8(6): 555-556.

[16] Freiberg R J, Chenausky P P, Buczek C J. Unstable asymmetric traveling-wave resonators for high-power laser applications[J]. IEEE Journal of Quantum Electronics, 1973, 9(6): 716-717.

[17] Freiberg R J, Chenausky P P, Buczek C J. Unidirectional unstable ring lasers[J]. Applied Optics, 1973, 12(6): 1140-1144.

[18] Latham W P. Analysis of reverse wave suppression in multiline chemical lasers[J]. Proceedings of SPIE, 1986, 642: 28-35.

[19] Siegman AE. Lasers[M]. Mill Valley, California: University Science Books, 1986: 899- 901.

[20] Oughstun K E, Slaymaker P A, Bush K A. Intracavity spatial filtering in unstable ring resonator geometries: part I-passive cavity mode theory[J]. IEEE Journal of Quantum Electronics, 1983, 19(10): 1558-1577.

[21] 董理治, 许冰, 杨平, 等. 中国科学院光电技术研究所固体板条激光器光束净化研究进展[J]. 光电工程, 2018, 45(3): 170539.

    Dong L Z, Xu B, Yang P, et al. Recent progress of adaptive beam cleanup of solid-state slab lasers in Institute of Optics and Electronics, Chinese Academy of Sciences[J]. Opto-Electronic Engineering, 2018, 45(3): 170539.

[22] Jiang W H, Li H G. Hartmann-Shack wavefront sensing and wavefront control algorithm[J]. Proceedings of SPIE, 1990, 1271: 82-94.

[23] Chen S Q, Dong L Z, Chen X J, et al. Adaptive slab laser beam quality improvement using a weighted least-squares reconstruction algorithm[J]. Applied Optics, 2016, 55(11): 3077-3083.

[24] Wang X, Lai B H, Dong L Z, et al. A 1350 W Nd∶YAG unstable ring laser with efficient reverse wave suppression[J]. IEEE Photonics Technology Letters, 2019, 31(1): 82-85.

[25] Fox A G, Li T Y. Resonant modes in a maser interferometer[J]. The Bell System Technical Journal, 1961, 40(2): 453-488.

[26] Fox A G, Li T Y. Modes in a maser interferometer with curved and tilted mirrors[J]. Proceedings of the IEEE, 1963, 51(1): 80-89.

[27] 陈钰清, 王静环. 激光原理[M]. 杭州: 浙江大学出版社, 1992: 313- 319.

    Chen YQ, Wang JH. Laser principle[M]. Hangzhou: Zhejiang University Press, 1992: 313- 319.

王勋, 赖柏衡, 董理治, 杨平, 陈善球, 王帅, 许冰. 百瓦级环形非稳腔板条激光器腔内校正[J]. 中国激光, 2019, 46(8): 0801001. Xun Wang, Boheng Lai, Lizhi Dong, Ping Yang, Shanqiu Chen, Shuai Wang, Bing Xu. Intra-Cavity Aberration Compensation in 100 W-Order Unstable Ring Slab Lasers[J]. Chinese Journal of Lasers, 2019, 46(8): 0801001.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!