中国激光, 2021, 48 (3): 0312001, 网络出版: 2021-02-02   

基于波长到时间映射快速测量纠缠光子相位匹配波长的实验方法 下载: 1170次

Experimental Method for Fast Measuring the Phase-matched Wavelengths of Entangled Photons by Wavelength-to-Time Mapping
李百宏 1,2夏志广 1,2项晓 2,3,*靳亚晴 2,3权润爱 2,3董瑞芳 2,3,**刘涛 2,3张首刚 2,3
作者单位
1 西安科技大学理学院, 陕西 西安 710054
2 中国科学院国家授时中心中国科学院时间频率基准重点实验室, 陕西 西安 710600
3 中国科学院大学天文与空间科学学院, 北京 100049
引用该论文

李百宏, 夏志广, 项晓, 靳亚晴, 权润爱, 董瑞芳, 刘涛, 张首刚. 基于波长到时间映射快速测量纠缠光子相位匹配波长的实验方法[J]. 中国激光, 2021, 48(3): 0312001.

Baihong Li, Zhiguang Xia, Xiao Xiang, Yaqing Jin, Run'ai Quan, Ruifang Dong, Tao Liu, Shougang Zhang. Experimental Method for Fast Measuring the Phase-matched Wavelengths of Entangled Photons by Wavelength-to-Time Mapping[J]. Chinese Journal of Lasers, 2021, 48(3): 0312001.

参考文献

[1] Giovannetti V, Lloyd S, Maccone L. Quantum-enhanced positioning and clock synchronization[J]. Nature, 2001, 412(6845): 417-419.

[2] Nasr M B, Minaeva O, Goltsman G N, et al. Submicron axial resolution in an ultrabroadband two-photon interferometer using superconducting single-photon detectors[J]. Optics Express, 2008, 16(19): 15104-15108.

[3] Quan R, Dong R, Zhai Y, et al. Simulation and realization of a second-order quantum-interference-based quantum clock synchronization at the femtosecond level[J]. Optics Letters, 2019, 44(3): 614-617.

[4] Hou F Y, Quan R N, Dong R F, et al. Fiber-optic two-way quantum time transfer with frequency-entangled pulses[J]. Physical Review A, 2019, 100(2): 023849.

[5] Yabushita A, Kobayashi T. Spectroscopy by frequency-entangled photon pairs[J]. Physical Review A, 2004, 69(1): 013806.

[6] Kalashnikov D A, Pan Z Y, Kuznetsov A I, et al. Quantum spectroscopy of plasmonic nanostructures[J]. Physical Review X, 2014, 4(1): 011049.

[7] Stassi R, De Liberato S, Garziano L, et al. Spectral correlation measurements at the Hong-Ou-Mandel interference dip[J]. Physical Review A, 2015, 91(1): 013830.

[8] Jin R B, Gerrits T, Fujiwara M, et al. Spectrally resolved Hong-Ou-Mandel interference between independent photon sources[J]. Optics Express, 2015, 23(22): 28836-28848.

[9] Jin R B, Shimizu R. Extended Wiener-Khinchin theorem for quantum spectral analysis[J]. Optica, 2018, 5(2): 93-98.

[10] Jin R B, Saito T, Shimizu R. Time-frequency duality of biphotons for quantum optical synthesis[J]. Physical Review Applied, 2018, 10(3): 034011.

[11] Xiang X, Xiang X, Dong R F, et al. Hybrid frequency-time spectrograph for the spectral measurement of the two-photon state[J]. Optics Letters, 2020, 45(11): 2993-2996.

[12] Dong S, Zhang W, Huang Y D, et al. Long-distance temporal quantum ghost imaging over optical fibers[J]. Scientific Reports, 2016, 6: 26022.

[13] Yao X, Zhang W, Li H, et al. Long-distance thermal temporal ghost imaging over optical fibers[J]. Optics Letters, 2018, 43(4): 759-762.

[14] Yao X, Liu X, You L X, et al. Quantum secure ghost imaging[J]. Physical Review A, 2018, 98(6): 063816.

[15] 吴自文, 邱晓东, 陈理想. 关联成像技术研究现状及展望[J]. 激光与光电子学进展, 2020, 57(6): 060001.

    Wu Z W, Qiu X D, Chen L X. Current status and prospect for correlated imaging technique[J]. Laser & Optoelectronics Progress, 2020, 57(6): 060001.

[16] Bennett C H, Brassard G, Crépeau C, et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels[J]. Physical Review Letters, 1993, 70(13): 1895.

[17] Howell J C, Bennink R S, Bentley S J, et al. Realization of the Einstein-Podolsky-Rosen paradox using momentum- and position-entangled photons from spontaneous parametric down conversion[J]. Physical Review Letters, 2004, 92(21): 210403.

[18] . Fu C B, Zhang S, et al. Probabilistic teleportation of an arbitrary three-particle state via a partial entangled four-particle state and a three-particle GHZ state[J]. Journal of the Korean Physical Society, 2005, 46(2): 388-392.

[19] Deng F G, Long G L, Liu X S. Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block[J]. Physical Review A, 2003, 68(4): 042317.

[20] Zhu A D, Xia Y, Fan Q B, et al. Secure direct communication based on secret transmitting order of particles[J]. Physical Review A, 2006, 73(2): 022338.

[21] Xia Y, Song H S. Controlled quantum secure direct communication using a non-symmetric quantum channel with quantum superdense coding[J]. Physics Letters A, 2007, 364(2): 117-122.

[22] Hum D S, Fejer M M. Quasi-phasematching[J]. Comptes Rendus Physique, 2007, 8(2): 180-198.

[23] Xu P, Zhu S N. Review article: quasi-phase-matching engineering of entangled photons[J]. AIP Advances, 2012, 2(4): 041401.

[24] Jin R B, Chen G Q, Laudenbach F, et al. Thermal effects of the quantum states generated from the isomorphs of PPKTP crystal[J]. Optics & Laser Technology, 2019, 109: 222-226.

[25] Kato K, Takaoka E. Sellmeier and thermo-optic dispersion formulas for KTP[J]. Applied Optics, 2002, 41(24): 5040-5044.

[26] H CPhotonics. PPLN guide: overview [EB/OL].[2020-06-03].https:∥www.hcphotonics.com/ppln-guide-overview.

[27] Emanueli S, Arie A. Temperature-dependent dispersion equations for KTiOPO4 and KTiOAsO4[J]. Applied Optics, 2003, 42(33): 6661-6665.

[28] Kalashnikov D A, Katamadze K G, Kulik S P. Controlling the spectrum of a two-photon field: inhomogeneous broadening due to a temperature gradient[J]. JETP Letters, 2009, 89(5): 224-228.

[29] Jimenez G D, Garces V G. O'Donnell K A. Angular and temperature dependence of photon pair rates in spontaneous parametric down-conversion from a periodically poled crystal[J]. Physical Review A, 2017, 96(2): 023828.

[30] Kakuno S, Fujimura M, Suhara T. Wavelength tuning by temperature control in MgO-doped LiNbO3 waveguide quasi-phase-matching twin photon generation device[J]. Japanese Journal of Applied Physics, 2012, 51: 030201.

[31] Kolev V Z, Duering M W, Luther-Davies B. Corrections to refractive index data of stoichiometric lithium tantalate in the 5-6 μm range[J]. Optics Letters, 2006, 31(13): 2033-2035.

[32] Deng L H, Gao X M, Cao Z S, et al. Improvement to Sellmeier equation for periodically poled LiNbO3 crystal using mid-infrared difference-frequency generation[J]. Optics Communications, 2006, 268(1): 110-114.

[33] 张越, 侯飞雁, 刘涛, 等. 基于II类周期极化铌酸锂波导的通信波段小型化频率纠缠源产生及其量子特性测量[J]. 物理学报, 2018, 67(14): 144204.

    Zhang Y, Hou F Y, Liu T, et al. Generation and quantum characterization of miniaturized frequency entangled source in telecommunication band based on type-II periodically poled lithium niobate waveguide[J]. Acta Physica Sinica, 2018, 67(14): 144204.

[34] Solli D R, Chou J, Jalali B. Amplified wavelength-time transformation for real-time spectroscopy[J]. Nature Photonics, 2008, 2(1): 48-51.

[35] Chandrasekharan H K, Izdebski F, Gris-Sánchez I, et al. Multiplexed single-mode wavelength-to-time mapping of multimode light[J]. Nature Communications, 2017, 8: 14080.

[36] Yang Y, Yang Y, Yang Y, et al. Inherent resolution limit on nonlocal wavelength-to-time mapping with entangled photon pairs[J]. Optics Express, 2020, 28(5): 7488-7497.

[37] Wu J, You L, Chen S, et al. Improving the timing jitter of a superconducting nanowire single-photon detection system[J]. Applied Optics, 2017, 56(8): 2195-2200.

[38] Grice W P, Walmsley I A. Spectral information and distinguishability in type-II down-conversion with a broadband pump[J]. Physical Review A, 1997, 56(2): 1627.

[39] Fedrizzi A, Herbst T, Aspelmeyer M, et al. Anti-symmetrization reveals hidden entanglement[J]. New Journal of Physics, 2009, 11(10): 103052.

[40] Basiri-Esfahani S, Myers C R, Armin A, et al. Integrated quantum photonic sensor based on Hong-Ou-Mandel interference[J]. Optics Express, 2015, 23(12): 16008-16023.

李百宏, 夏志广, 项晓, 靳亚晴, 权润爱, 董瑞芳, 刘涛, 张首刚. 基于波长到时间映射快速测量纠缠光子相位匹配波长的实验方法[J]. 中国激光, 2021, 48(3): 0312001. Baihong Li, Zhiguang Xia, Xiao Xiang, Yaqing Jin, Run'ai Quan, Ruifang Dong, Tao Liu, Shougang Zhang. Experimental Method for Fast Measuring the Phase-matched Wavelengths of Entangled Photons by Wavelength-to-Time Mapping[J]. Chinese Journal of Lasers, 2021, 48(3): 0312001.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!