中国激光, 2018, 45 (4): 0400001, 网络出版: 2018-04-13   

双光梳光谱技术研究进展 下载: 3133次封面文章

Research Advances in Dual-Comb Spectroscopy
路桥 1,2时雷 1毛庆和 1,2,*
作者单位
1 中国科学院安徽光学精密机械研究所安徽光子器件与材料省级实验室, 安徽 合肥 230031
2 中国科学技术大学, 安徽 合肥 230026
引用该论文

路桥, 时雷, 毛庆和. 双光梳光谱技术研究进展[J]. 中国激光, 2018, 45(4): 0400001.

Lu Qiao, Shi Lei, Mao Qinghe. Research Advances in Dual-Comb Spectroscopy[J]. Chinese Journal of Lasers, 2018, 45(4): 0400001.

参考文献

[1] Udem T, Holzwarth R, Hänsch T W. Optical frequency metrology[J]. Nature, 2002, 416(6877): 233-237.

[2] 孙青, 杨奕, 孟飞, 等. 基于频率梳的太赫兹频率精密测量方法研究[J]. 光学学报, 2016, 36(4): 0412002.

    Sun Q, Yang Y, Meng F, et al. High-precision measurement of terahertz frequency based on frequency comb[J]. Acta Optica Sinica, 2016, 36(4): 0412002.

[3] Chou C W, Hume D B, Rosenband T, et al. Optical clocks and relativity[J]. Science, 2010, 329(5999): 1630-1633.

[4] Predehl K, Grosche G. Raupach S M F, et al. A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place[J]. Science, 2012, 336(6080): 441-444.

[5] Holzwarth R, Udem T, Hansch T W, et al. Optical frequency synthesizer for precision spectroscopy[J]. Physical Review Letters, 2000, 85(11): 2264-2267.

[6] Krausz F, Ivanov M. Attosecond physics[J]. Reviews of Modern Physics, 2009, 81(1): 163-234.

[7] Steinmetz T, Wilken T, Araujo-Hauck C, et al. Laser frequency combs for astronomical observations[J]. Science, 2008, 321(5894): 1335-1337.

[8] 吴元杰, 叶慧琪, 韩建, 等. 2.16 m望远镜高分辨率光谱仪的天文光学频率梳[J]. 光学学报, 2016, 36(6): 0614001.

    Wu Y J, Ye H Q, Han J, et al. Astronomical laser frequency comb for high resolution spectrograph of 2.16 m telescope[J]. Acta Optica Sinica, 2016, 36(6): 0614001.

[9] Cundiff S T, Weiner A M. Optical arbitrary waveform generation[J]. Nature Photonics, 2010, 4(11): 760-766.

[10] Coddington I, Swann W C, Nenadovic L, et al. Rapid and precise absolute distance measurements at long range[J]. Nature Photonics, 2009, 3(6): 351-356.

[11] Diddams S A, Jones D J, Ye J, et al. Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb[J]. Physical Review Letters, 2000, 84(22): 5102-5105.

[12] Torres-Company V, Weiner A M. Optical frequency comb technology for ultra-broadband radio-frequency photonics[J]. Laser & Photonics Reviews, 2014, 8(3): 368-393.

[13] Del'Haye P, Schliesser A, Arcizet O, et al. . Optical frequency comb generation from a monolithic microresonator[J]. Nature, 2007, 450(7173): 1214-1217.

[14] Hall J L. Nobel lecture: defining and measuring optical frequencies[J]. Reviews of Modern Physics, 2006, 78(4): 1279-1295.

[15] Hänsch T W. Nobel lecture: passion for precision[J]. Reviews of Modern Physics, 2006, 78(4): 1297-1309.

[16] Adler F, Maslowski P, Foltynowicz A, et al. Mid-infrared Fourier transform spectroscopy with a broadband frequency comb[J]. Optics Express, 2010, 18(21): 21861-21872.

[17] Gohle C, Stein B, Schliesser A, et al. Frequency comb vernier spectroscopy for broadband, high-resolution, high-sensitivity absorption and dispersion spectra[J]. Physical Review Letters, 2007, 99(26): 263902.

[18] Diddams S A, Hollberg L, Mbele V. Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb[J]. Nature, 2007, 445(7128): 627-630.

[19] Coddington I, Newbury N, Swann W. Dual-comb spectroscopy[J]. Optica, 2016, 3(4): 414-426.

[20] Schiller S. Spectrometry with frequency combs[J]. Optics Letters, 2002, 27(9): 766-768.

[21] Keilmann F, Gohle C, Holzwarth R. Time-domain mid-infrared frequency-comb spectrometer[J]. Optics Letters, 2004, 29(13): 1542-1544.

[22] Ideguchi T, Poisson A, Guelachvili G, et al. Adaptive real-time dual-comb spectroscopy[J]. Nature Communications, 2014, 5: 3375.

[23] Roy J, Deschênes J D, Potvin S, et al. Continuous real-time correction and averaging for frequency comb interferometry[J]. Optics Express, 2012, 20(20): 21932-21939.

[24] Coddington I, Swann W, Newbury N. Coherent dual-comb spectroscopy at high signal-to-noise ratio[J]. Physical Review A, 2010, 82(4): 043817.

[25] Ideguchi T. Dual-comb spectroscopy[J]. Optics and Photonics News, 2017, 28(1): 32-39.

[26] Cossel K C, Waxman E M, Finneran I A, et al. Gas-phase broadband spectroscopy using active sources: progress, status, and applications[J]. Journal of the Optical Society of America B, 2017, 34(1): 104-129.

[27] Lee K, Lee J, Jang Y S, et al. Fourier-transform spectroscopy using an Er-doped fiber femtosecond laser by sweeping the pulse repetition rate[J]. Scientific Reports, 2015, 5: 15726.

[28] Hsieh Y D, Iyonaga Y, Sakaguchi Y, et al. Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs[J]. Scientific Reports, 2014, 4: 3816.

[29] Cassinerio M, Gambetta A, Coluccelli N, et al. Absolute dual-comb spectroscopy at 1.55 mm by free-running Er∶fiber lasers[J]. Applied Physics Letters, 2014, 104(23): 231102.

[30] Zhao X, Hu G Q, Zhao B F, et al. Picometer-resolution dual-comb spectroscopy with a free-running fiber laser[J]. Optics Express, 2016, 24(19): 21833-21845.

[31] Yang H L, Wei H Y, Zhang H Y, et al. Performance estimation of dual-comb spectroscopy in different frequency-control schemes[J]. Applied Optics, 2016, 55(23): 6321-6330.

[32] Yang H L, Wei H Y, Chen K, et al. Simply-integrated dual-comb spectrometer via tunable repetition rates and avoiding self-referencing[J]. Optics Express, 2017, 25(7): 8063-8072.

[33] 于子蛟, 韩海年, 魏志义. 双光梳光谱学研究进展[J]. 物理, 2014, 43(7): 460-467.

    Yu Z J, Han H N, Wei Z Y. Progress in dual-comb spectroscopy[J]. Physics, 2014, 43(7): 460-467.

[34] Suh M G, Yang Q F, Yang K Y, et al. Microresonator soliton dual-comb spectroscopy[J]. Science, 2016, 354(6312): 600-603.

[35] Millot G, Pitois S, Yan M, et al. Frequency-agile dual-comb spectroscopy[J]. Nature Photonics, 2016, 10(1): 27-30.

[36] Coddington I, Swann W, Newbury N. Coherent multiheterodyne spectroscopy using stabilized optical frequency combs[J]. Physical Review Letters, 2008, 100(1): 013902.

[37] Giaccari P, Deschênes J D, Saucier P, et al. Active Fourier-transform spectroscopy combining the direct RF beating of two fiber-based mode-locked lasers with a novel referencing method[J]. Optics Express, 2008, 16(6): 4347-4365.

[38] Newbury N R, Swann W C. Low-noise fiber-laser frequency combs (invited)[J]. Journal of the Optical Society of America B, 2007, 24(8): 1756-1770.

[39] Newbury N R, Washburn B R. Theory of the frequency comb output from a femtosecond fiber laser[J]. IEEE Journal of Quantum Electronics, 2005, 41(11): 1388-1402.

[40] Droste S, Ycas G, Washburn B R, et al. Optical frequency comb generation based on erbium fiber lasers[J]. Nanophotonics, 2016, 5(2): 196-213.

[41] Jones D J, Diddams S A, Ranka J K, et al. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis[J]. Science, 2000, 288(5466): 635-639.

[42] 吴浩煜, 时雷, 马挺, 等. 基于飞秒光纤激光器的光频率梳设计与研制技术[J]. 中国激光, 2017, 44(6): 0601008.

    Wu H Y, Shi L, Ma T, et al. Design and development technique for optical frequency comb based on femtosecond fiber lasers[J]. Chinese Journal of Lasers, 2017, 44(6): 0601008.

[43] Diddams S A, Udem T, Bergquist J C, et al. An optical clock based on a single trapped 199Hg + ion [J]. Science, 2001, 293(5531): 825-828.

[44] Swann W C, Baumann E, Giorgetta F R, et al. Microwave generation with low residual phase noise from a femtosecond fiber laser with an intracavity electro-optic modulator[J]. Optics Express, 2011, 19(24): 24387-24395.

[45] Fehrenbacher D, Sulzer P, Liehl A, et al. Free-running performance and full control of a passively phase-stable Er∶fiber frequency comb[J]. Optica, 2015, 2(10): 917-923.

[46] Baltuška A, Fuji T, Kobayashi T. Controlling the carrier-envelope phase of ultrashort light pulses with optical parametric amplifiers[J]. Physical Review Letters, 2002, 88(13): 133901.

[47] Standards Coordingating Committee 27. IEEE standard definitions of physical quantities for fundamental frequency and time metrology - Random instabilities[S]. New York: IEEE, 1999: 1139.

[48] Kim J W, Song Y J. Ultralow-noise mode-locked fiber lasers and frequency combs: principles, status, and applications[J]. Advances in Optics and Photonics, 2016, 8(3): 465-540.

[49] Pang L H, Han H N, Zhao Z B, et al. Ultra-stability Yb-doped fiber optical frequency comb with 2×10 18/s stability in-loop [J]. Optics Express, 2016, 24(25): 28993-29000.

[50] Griffiths PR, Haseth J A D. Fourier transform infrared spectrometry[M]. 2nd ed. New Jersey: John Wiely & Sons, 2006: 19- 36.

[51] Coddington I, Swann W C, Newbury N R. Coherent linear optical sampling at 15 bits of resolution[J]. Optics Letters, 2009, 34(14): 2153-2155.

[52] Brehm M, Schliesser A, Keilmann F. Spectroscopic near-field microscopy using frequency combs in the mid-infrared[J]. Optics Express, 2006, 14(23): 11222-11233.

[53] Coddington I, Swann W C, Newbury N R. Time-domain spectroscopy of molecular free-induction decay in the infrared[J]. Optics Letters, 2010, 35(9): 1395-1397.

[54] Ideguchi T, Poisson A, Guelachvili G, et al. Adaptive dual-comb spectroscopy in the green region[J]. Optics Letters, 2012, 37(23): 4847-4849.

[55] Deschênes J D, Giaccari P, Genest J. Optical referencing technique with CW lasers as intermediate oscillators for continuous full delay range frequency comb interferometry[J]. Optics Express, 2010, 18(22): 23358-23370.

[56] Hébert N B, Genest J, Deschênes J D, et al. Self-corrected chip-based dual-comb spectrometer[J]. Optics Express, 2017, 25(7): 8168-8179.

[57] Ideguchi T, Nakamura T, Kobayashi Y, et al. Kerr-lens mode-locked bidirectional dual-comb ring laser for broadband dual-comb spectroscopy[J]. Optica, 2016, 3(7): 748-753.

[58] Link S M, Klenner A, Mangold M, et al. Dual-comb modelocked laser[J]. Optics Express, 2015, 23(5): 5521-5531.

[59] Rieker G B, Giorgetta F R, Swann W C, et al. Frequency-comb-based remote sensing of greenhouse gases over kilometer air paths[J]. Optica, 2014, 1(5): 290-298.

[60] Sinclair L C, Giorgetta F R, Swann W C, et al. Optical phase noise from atmospheric fluctuations and its impact on optical time-frequency transfer[J]. Physical Review A, 2014, 89(2): 023805.

[61] Sinclair L C, Coddington I, Swann W C, et al. Operation of an optically coherent frequency comb outside the metrology lab[J]. Optics Express, 2014, 22(6): 6996-7006.

[62] Burghoff D, Yang Y, Hu Q. Computational multiheterodyne spectroscopy[J]. Science Adances, 2016, 2(11): e1601227.

[63] Sterczewski LA, WestbergJ, PatrickL, et al. Computational adaptive sampling for multiheterodyne spectroscopy[C]. Conference on Lasers and Electro-Optics, 2017: JW2A. 80.

[64] GongZ, ZhaoX, Hu GQ, et al. Polarization multiplexed, dual-frequency ultrashort pulse generation by a birefringent mode-locked fiber laser[C]. Conference on Lasers and Electro-Optics, 2014: JTh2A. 20.

[65] Mehravar S, Norwood R A, Peyghambarian N, et al. Real-time dual-comb spectroscopy with a free-running bidirectionally mode-locked fiber laser[J]. Applied Physics Letters, 2016, 108: 231104.

[66] Hébert N B, Michaud-Belleau V, Magnan-Saucier S, et al. Dual-comb spectroscopy with a phase-modulated probe comb for sub-MHz spectral sampling[J]. Optics Letters, 2016, 41(10): 2282-2285.

[67] Yasui T, Iyonaga Y, Hsieh Y D, et al. Super-resolution discrete Fourier transform spectroscopy beyond time-window size limitation using precisely periodic pulsed radiation[J]. Optica, 2015, 2(5): 460-467.

[68] Yasui T, Ichikawa R, Hsieh Y D, et al. Adaptive sampling dual terahertz comb spectroscopy using dual free-running femtosecond lasers[J]. Scientific Reports, 2015, 5: 10786.

[69] Okubo S, Hsieh Y D, Inaba H, et al. Near-infrared broadband dual-frequency-comb spectroscopy with a resolution beyond the Fourier limit determined by the observation time window[J]. Optics Express, 2015, 23(26): 33184-33193.

[70] Newbury N R, Coddington I, Swann W. Sensitivity of coherent dual-comb spectroscopy[J]. Optics Express, 2010, 18(8): 7929-7945.

[71] Foltynowicz A, Masłowski P, Ban T, et al. Optical frequency comb spectroscopy[J]. Faraday Discussions, 2011, 150: 23-31.

[72] Fleisher A J, Long D A, Reed Z D, et al. Coherent cavity-enhanced dual-comb spectroscopy[J]. Optics Express, 2016, 24(10): 10424-10434.

[73] Bernhardt B, Ozawa A, Jacquet P, et al. Cavity-enhanced dual-comb spectroscopy[J]. Nature Photonics, 2009, 4(1): 55-57.

[74] Jin Y, Cristescu S M. Harren F J M, et al. Femtosecond optical parametric oscillators toward real-time dual-comb spectroscopy[J]. Applied Physics B, 2015, 119(1): 65-74.

[75] Ideguchi T, Holzner S, Bernhardt B, et al. Coherent Raman spectro-imaging with laser frequency combs[J]. Nature, 2013, 502(7471): 355-358.

[76] Carlson DR, Wu TH, Jones RJ. Dual-comb intracavity high harmonic generation[C]. Frontiers in Optics, 2014: FTh1A. 2.

[77] Potvin S, Genest J. Dual-comb spectroscopy using frequency-doubled combs around 775 nm[J]. Optics Express, 2013, 21(25): 30707-30715.

[78] Schliesser A, Brehm M, Keilmann F, et al. Frequency-comb infrared spectrometer for rapid, remote chemical sensing[J]. Optics Express, 2005, 13(22): 9029-9038.

[79] Zhang Z W, Gu C L, Sun J H, et al. Asynchronous midinfrared ultrafast optical parametric oscillator for dual-comb spectroscopy[J]. Optics Letters, 2012, 37(2): 187-189.

[80] Yasui T, Nose M, Ihara A, et al. Fiber-based, hybrid terahertz spectrometer using dual fiber combs[J]. Optics Letters, 2010, 35(10): 1689-1691.

[81] Yasui T, Kabetani Y, Saneyoshi E, et al. Terahertz frequency comb by multifrequency-heterodyning photoconductive detection for high-accuracy, high-resolution terahertz spectroscopy[J]. Applied Physics Letters, 2006, 88(24): 241104.

[82] Bernhardt B, Sorokin E, Jacquet P, et al. Mid-infrared dual-comb spectroscopy with 2.4 μm Cr 2+∶ZnSe femtosecond lasers [J]. Applied Physics B, 2010, 100(1): 3-8.

[83] Villares G, Hugi A, Blaser S, et al. Dual-comb spectroscopy based on quantum-cascade-laser frequency combs[J]. Nature Communications, 2014, 5: 5192.

[84] Zolot A M, Giorgetta F R, Baumann E, et al. Direct-comb molecular spectroscopy with accurate, resolved comb teeth over 43 THz[J]. Optics Letters, 2012, 37(4): 638-640.

[85] Okubo S, Iwakuni K, Inaba H, et al. Ultra-broadband dual-comb spectroscopy across 1.0-1.9 μm[J]. Applied Physics Express, 2015, 8: 082402.

[86] Glenn R, Mukamel S. Nonlinear transmission spectroscopy with dual frequency combs[J]. Physical Review A, 2014, 90(2): 023804.

[87] Hipke A, Meek S A, Ideguchi T, et al. Broadband Doppler-limited two-photon and stepwise excitation spectroscopy with laser frequency combs[J]. Physical Review A, 2014, 90(1): 011805.

[88] Ideguchi T, Bernhardt B, Guelachvili G, et al. Raman-induced Kerr-effect dual-comb spectroscopy[J]. Optics Letters, 2012, 37(21): 4498-4500.

[89] Portuondo-Campa E, Bennès J, Balet L, et al. Tuneable dual-comb spectrometer based on commercial femtosecond lasers and reference cell for optical frequency calibration[J]. Applied Physics B, 2016, 122: 1-9.

[90] Mohler K J, Bohn B J, Yan M, et al. Dual-comb coherent Raman spectroscopy with lasers of 1-GHz pulse repetition frequency[J]. Optics Letters, 2017, 42(2): 318-321.

[91] Boudreau S, Levasseur S, Perilla C, et al. Chemical detection with hyperspectral lidar using dual frequency combs[J]. Optics Express, 2013, 21(6): 7411-7418.

[92] Asahara A, Nishiyama A, Yoshida S, et al. Dual-comb spectroscopy for rapid characterization of complex optical properties of solids[J]. Optics Letters, 2016, 41(21): 4971-4974.

[93] Thorpe M J, Moll K D, Jones R J, et al. Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection[J]. Science, 2006, 311(5767): 1595-1599.

[94] Thorpe M J, Balslev-Clausen D, Kirchner M S, et al. Cavity-enhanced optical frequency comb spectroscopy: application to human breath analysis[J]. Optics Express, 2008, 16(4): 2387-2397.

[95] Crosson E R, Ricci K N, Richman B A, et al. Stable isotope ratios using cavity ring-down spectroscopy: determination of 13C/ 12C for carbon dioxide in human breath [J]. Analytical Chemistry, 2002, 74(9): 2003-2007.

[96] Galli I, Bartalini S, Borri S, et al. Molecular gas sensing below parts per trillion: radiocarbon-dioxide optical detection[J]. Physical Review Letters, 2011, 107(27): 270802.

[97] PicqueN. Fourier transform spectroscopy with laser frequency combs[C]. Fourier Transform Spectroscopy and Hyperspectral Imaging and Sounding of the Environment, 2015: FT2A. 1.

[98] Sinclair L C, Deschenes J D, Sonderhouse L, et al. Invited article: a compact optically coherent fiber frequency comb[J]. Review of Scientific Instruments, 2015, 86(8): 081301.

[99] Chen ZJ, YanM, Hänsch TW, et al. A phase-stable dual-comb interferometer[J/OL]. arXiv, 2017: 1705. 04214 (2017-05-11). https://arxiv.org/ftp/arxiv/papers/1705/1705.04214.pdf.

[100] Truong G W, Waxman E M, Cossel K C, et al. Accurate frequency referencing for fieldable dual-comb spectroscopy[J]. Optics Express, 2016, 24(26): 30495-30504.

[101] Feng Y, Xu X, Hu X H, et al. Environmental-adaptability analysis of an all polarization-maintaining fiber-based optical frequency comb[J]. Optics Express, 2015, 23(13): 17549-17559.

[102] Baumann E, Giorgetta F R, Nicholson J W, et al. High-performance, vibration-immune, fiber-laser frequency comb[J]. Optics Letters, 2009, 34(5): 638-640.

[103] Lee J, Lee K, Jang Y S, et al. Testing of a femtosecond pulse laser in outer space[J]. Scientific Reports, 2014, 4: 5134.

[104] Jang Y S, Lee J, Kim S, et al. Space radiation test of saturable absorber for femtosecond laser[J]. Optics Letters, 2014, 39(10): 2831-2834.

[105] Lezius M, Wilken T, Deutsch C, et al. Space-borne frequency comb metrology[J]. Optica, 2016, 3(12): 1381-1387.

[106] WilkenT, LeziusM, Hänsch TW, et al. A frequency comb and precision spectroscopy experiment in space[C]. Conference on Lasers and Electro-Optics, 2013: AF2H. 5.

[107] TadanagaO, OkuboA, InabaH, et al. Wideband optical frequency comb light source for use in e.g. dual comb spectroscopy application, has nonlinear optical medium emitting light of first and second wavelength among lights in input of optical frequency comb: JP2016212261A[P].2016-12-15.

[108] ZhengZ, ZhaoX, LiuL, et al. Method and system for measuring optical asynchronous sampled signal: WO2013127370[P].2013-09-06.

[109] Kieu K Q. Dual-comb spectroscopy with a free-running bidirectionally mode-locked fiber laser: WO2016196677A1[P].2016-12-08.

[110] KippenbergT, Del'HayeP, Schliesser A.Method and apparatus for optical frequency comb generation using a monolithic micro-resonator: US7982944[P].2011-07-19.

[111] Kieu K Q. Method for interrogating absorbing sample using dual-comb spectroscopy system, involves using mode-locked laser to be mode-locked, detecting interference pattern produced by interference between pulses after traversing sample: WO2016196677A1[P].2016-12-08.

[112] Fermann ME, MarangoniM, Gatti D. Laser system for line narrowing of frequency shifted continuous wave ( CW) lasers has frequencyshifter, generating linenarrowed and CW laseroutput, which is driven by signal derived from beat signal in feedforward configuration: WO2013148757A1, US2015185141A1, US9097656B2[P].2013-11-03.

[113] Chandler DW, Strecker K E. Dual-etalon cavity-ring-down frequency-comb spectrometer system defines spectrums of light which includes multiple optical frequencies, by frequency-combsignals, respectively: WO2012003046A2, WO2012003046A3, US2012002212A1, US8693004B2[P].2012-01-05.

[114] Fermann ME, Hartl I. Coherent dual scanning laser system for e.g. optical imaging of test sample, has optical reference comprising optical element that generates reference signal for measurement of time delay between pulses of pulse pair as function of time: US2014219298A1, US9252560B2[P].2014-08-07.

[115] Fermann ME, Hartl I. Coherent dual scanning laser system for optical imaging system used in e.g. microscopy, has optical element that generates frequency converted spectral output having frequency comb comprising harmonics of oscillator repetition rates: WO2010101690A1, US2010225897A1, US8120778B2, CN102349205A, CN102349205B, JP2012519879W, JP5663499B2, DE112010000981T5[P].2010-09-09.

[116] Newbury NR, CoddingtonI, Swann W C. Method for performing comb-based spectroscopy of hydrogen cyanide gas sample in workhorse system for e.g. research application, involves real time summing digitized sample to generate averaged signal pulse: US2011069309A1, US8564785B2[P].2011-03-24.

[117] CoddingtonI, Newbury NR, Swann W C. Comb-based spectroscopy method for measuring continuous wave source at time-bandwidth limited resolution, involves Fourier transforming product of digitized samples to yield wideband spectrum of source at resolution by comb repetition rate: US2013342836A1, US9557219B2[P].2013-12-26.

路桥, 时雷, 毛庆和. 双光梳光谱技术研究进展[J]. 中国激光, 2018, 45(4): 0400001. Lu Qiao, Shi Lei, Mao Qinghe. Research Advances in Dual-Comb Spectroscopy[J]. Chinese Journal of Lasers, 2018, 45(4): 0400001.

本文已被 9 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!