激光与光电子学进展, 2019, 56 (24): 242703, 网络出版: 2019-11-26   

直接耦合腔中通过耗散通道制备Bell态 下载: 759次

Preparing Bell State by Using Dissipative Process in Directly Coupled Cavities
林杰 *
作者单位
福建医科大学基础医学院, 福建 福州 350122
引用该论文

林杰. 直接耦合腔中通过耗散通道制备Bell态[J]. 激光与光电子学进展, 2019, 56(24): 242703.

Jie Lin. Preparing Bell State by Using Dissipative Process in Directly Coupled Cavities[J]. Laser & Optoelectronics Progress, 2019, 56(24): 242703.

参考文献

[1] Nielsen MA, Chuang IL. Quantum computation and quantum information[M]. Cambridge: Cambridge University Press, 2000.

[2] Bennett C H. DiVincenzo D P. Quantum information and computation[J]. Nature, 2000, 404(6775): 247-255.

[3] Hua M, Tao M J, Deng F G. Fast universal quantum gates on microwave photons with all-resonance operations in circuit QED[J]. Scientific Reports, 2015, 5: 9274.

[4] Clauser J F, Horne M A, Shimony A, et al. Proposed experiment to test local hidden-variable theories[J]. Physical Review Letters, 1969, 23(15): 880-884.

[5] Bell J S. On the Einstein Podolsky Rosen paradox[J]. Physics Physique Fizika, 1964, 1(3): 195-200.

[6] Zheng S B, Guo G C. Efficient scheme for two-atom entanglement and quantum information processing in cavity QED[J]. Physical Review Letters, 2000, 85(11): 2392-2395.

[7] Blatt R, Wineland D. Entangled states of trapped atomic ions[J]. Nature, 2008, 453(7198): 1008-1015.

[8] 邱昌东, 卢道明. 两维耦合腔系统中的纠缠特性[J]. 光学学报, 2016, 36(5): 0527001.

    Qiu C D, Lu D M. Entanglement characteristics in two-dimensional coupled cavity systems[J]. Acta Optica Sinica, 2016, 36(5): 0527001.

[9] 郭战营, 张新海, 肖瑞华, 等. 两粒子XXZ海森堡系统中的量子纠缠动力学[J]. 光学学报, 2014, 34(7): 0727001.

    Guo Z Y, Zhang X H, Xiao R H, et al. Dynamics of quantum entanglement in a two-qubit XXZ Heisenberg system[J]. Acta Optica Sinica, 2014, 34(7): 0727001.

[10] 丛红璐, 任学藻. Tavis-Cummings模型的能谱和量子纠缠的精确解[J]. 激光与光电子学进展, 2017, 54(9): 092701.

    Cong H L, Ren X Z. Exact solutions of energy spectrum and quantum entanglement in Tavis-Cummings model[J]. Laser & Optoelectronics Progress, 2017, 54(9): 092701.

[11] Plenio M B, Huelga S F, Beige A, et al. Cavity-loss-induced generation of entangled atoms[J]. Physical Review A, 1999, 59(3): 2468-2475.

[12] Busch J, De S, Ivanov S S, et al. Cooling atom-cavity systems into entangled states[J]. Physical Review A, 2011, 84(2): 022316.

[13] Su S L, Shao X Q, Wang H F, et al. Preparation of three-dimensional entanglement for distant atoms in coupled cavities via atomic spontaneous emission and cavity decay[J]. Scientific Reports, 2014, 4: 7566.

[14] Su S L, Shao X Q, Guo Q, et al. Preparation of entanglement between atoms in spatially separated cavities via fiber loss[J]. The European Physical Journal D, 2015, 69(5): 123.

[15] Cho J, Bose S, Kim M S. Optical pumping into many-body entanglement[J]. Physical Review Letters, 2011, 106(2): 020504.

[16] Gonzalez-Tudela A, Martin-Cano D, Moreno E, et al. Entanglement of two qubits mediated by one-dimensional plasmonic waveguides[J]. Physical Review Letters, 2011, 106(2): 020501.

[17] Kastoryano M J, Reiter F, Sørensen A S. Dissipative preparation of entanglement in optical cavities[J]. Physical Review Letters, 2011, 106(9): 090502.

[18] Clark S, Peng A, Gu M L, et al. Unconditional preparation of entanglement between atoms in cascaded optical cavities[J]. Physical Review Letters, 2003, 91(17): 177901.

[19] Zheng S B, Shen L T. Generation and stabilization of maximal entanglement between two atomic qubits coupled to a decaying resonator[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2014, 47(5): 055502.

[20] Shen L T, Chen R X, Yang Z B, et al. Preparation of two-qubit steady entanglement through driving a single qubit[J]. Optics Letters, 2014, 39(20): 6046-6049.

[21] Shen L T, Chen X Y, Yang Z B, et al. Distributed entanglement induced by dissipative bosonic media[J]. EPL (Europhysics Letters), 2012, 99(2): 20003.

[22] Shen L T, Chen X Y, Yang Z B, et al. Steady-state entanglement for distant atoms by dissipation in coupled cavities[J]. Physical Review A, 2011, 84(6): 064302.

[23] Gullans M, Tiecke T G, Chang D E, et al. Nanoplasmonic lattices for ultracold atoms[J]. Physical Review Letters, 2012, 109(23): 235309.

[24] Barreiro J T, Müller M, Schindler P, et al. An open-system quantum simulator with trapped ions[J]. Nature, 2011, 470(7335): 486-491.

[25] Reiter F, Kastoryano M J, Sørensen A S. Driving two atoms in an optical cavity into an entangled steady state using engineered decay[J]. New Journal of Physics, 2012, 14(5): 053022.

[26] Shao X Q, Zheng T Y, Oh C H, et al. Dissipative creation of three-dimensional entangled state in optical cavity via spontaneous emission[J]. Physical Review A, 2014, 89(1): 012319.

[27] Shao X Q, You J B, Zheng T Y, et al. Stationary three-dimensional entanglement via dissipative Rydberg pumping[J]. Physical Review A, 2014, 89(5): 052313.

[28] Diehl S, Micheli A, Kantian A, et al. Quantum states and phases in driven open quantum systems with cold atoms[J]. Nature Physics, 2008, 4(11): 878-883.

[29] González-Tudela A, Porras D. Mesoscopic entanglement induced by spontaneous emission in solid-state quantum optics[J]. Physical Review Letters, 2013, 110(8): 080502.

[30] Muschik C A, Polzik E S, Cirac J I. Dissipatively driven entanglement of two macroscopic atomic ensembles[J]. Physical Review A, 2011, 83(5): 052312.

[31] Parkins A S, Solano E, Cirac J I. Unconditional two-mode squeezing of separated atomic ensembles[J]. Physical Review Letters, 2006, 96(5): 053602.

[32] Krauter H, Muschik C A, Jensen K, et al. Entanglement generated by dissipation and steady state entanglement of two macroscopic objects[J]. Physical Review Letters, 2011, 107(8): 080503.

[33] Lu D M, Zheng S B. One-step generation of maximally entangled states for three atoms trapped in separated cavities[J]. Chinese Journal of Physics, 2012, 50(5): 795-803.

[34] Li C B, Jiang Z H, Zhang Y Q, et al. Controlled correlation and squeezing in Pr 3+∶Y2SiO5 to yield correlated light beams[J]. Physical Review Applied, 2017, 7(1): 014023.

[35] Zhang D, Li C B, Zhang Z Y, et al. Enhanced intensity-difference squeezing via energy-level modulations in hot atomic media[J]. Physical Review A, 2017, 96(4): 043847.

[36] Abdisa G, Ahmed I, Wang X X, et al. Controllable hybrid shape of correlation and squeezing[J]. Physical Review A, 2016, 94(2): 023849.

[37] Shankar S, Hatridge M, Leghtas Z, et al. Autonomously stabilized entanglement between two superconducting quantum bits[J]. Nature, 2013, 504(7480): 419-422.

林杰. 直接耦合腔中通过耗散通道制备Bell态[J]. 激光与光电子学进展, 2019, 56(24): 242703. Jie Lin. Preparing Bell State by Using Dissipative Process in Directly Coupled Cavities[J]. Laser & Optoelectronics Progress, 2019, 56(24): 242703.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!