光学学报, 2019, 39 (4): 0427001, 网络出版: 2019-05-10   

基于标记配对相干态和轨道角动量的量子密钥分配 下载: 1107次

Quantum Key Distribution Based on Heralded Pair Coherent State and Orbital Angular Momentum
作者单位
1 西安邮电大学无线网络安全技术国家工程实验室, 陕西 西安 710121
2 西安邮电大学通信与信息工程学院, 陕西 西安 710121
引用该论文

何业锋, 杨红娟, 王登, 李东琪, 宋畅. 基于标记配对相干态和轨道角动量的量子密钥分配[J]. 光学学报, 2019, 39(4): 0427001.

Yefeng He, Hongjuan Yang, Deng Wang, Dongqi Li, Chang Song. Quantum Key Distribution Based on Heralded Pair Coherent State and Orbital Angular Momentum[J]. Acta Optica Sinica, 2019, 39(4): 0427001.

参考文献

[1] Bennett C H, Brassard G, Ekert A K. Quantum cryptography[J]. Scientific American, 1992, 267(4): 50-57.

    Bennett C H, Brassard G, Ekert A K. Quantum cryptography[J]. Scientific American, 1992, 267(4): 50-57.

[2] Shor P W, Preskill J. Simple proof of security of the BB84 quantum key distribution protocol[J]. Physical Review Letters, 2000, 85(2): 441-444.

    Shor P W, Preskill J. Simple proof of security of the BB84 quantum key distribution protocol[J]. Physical Review Letters, 2000, 85(2): 441-444.

[3] Mayers D. Unconditional security in quantum cryptography[J]. Journal of the ACM, 2001, 48(3): 351-406.

    Mayers D. Unconditional security in quantum cryptography[J]. Journal of the ACM, 2001, 48(3): 351-406.

[4] Gottesman D, Lo H K, Preskill J. Security of quantum key distribution with imperfect devices[J]. Quantum Information & Computation, 2002, 4(5): 325-360.

    Gottesman D, Lo H K, Preskill J. Security of quantum key distribution with imperfect devices[J]. Quantum Information & Computation, 2002, 4(5): 325-360.

[5] 东晨, 赵尚弘, 赵卫虎, 等. 非对称信道传输效率的测量设备无关量子密钥分配研究[J]. 物理学报, 2014, 63(3): 030302.

    东晨, 赵尚弘, 赵卫虎, 等. 非对称信道传输效率的测量设备无关量子密钥分配研究[J]. 物理学报, 2014, 63(3): 030302.

    Dong C, Zhao S H, Zhao W H, et al. Analysis of measurement device indep endent quantum key distribution with an asymmetric channel transmittance efficiency[J]. Acta Physica Sinica, 2014, 63(3): 030302.

    Dong C, Zhao S H, Zhao W H, et al. Analysis of measurement device indep endent quantum key distribution with an asymmetric channel transmittance efficiency[J]. Acta Physica Sinica, 2014, 63(3): 030302.

[6] 杜亚男, 解文钟, 金璇, 等. 基于弱相干光源测量设备无关量子密钥分发系统的误码率分析[J]. 物理学报, 2015, 64(11): 110301.

    杜亚男, 解文钟, 金璇, 等. 基于弱相干光源测量设备无关量子密钥分发系统的误码率分析[J]. 物理学报, 2015, 64(11): 110301.

    Du Y N, Xie W Z, Jin X, et al. Analysis on quantum bit error rate in measurement-device-independent quantum key distribution using weak coherent states[J]. Acta Physica Sinica, 2015, 64(11): 110301.

    Du Y N, Xie W Z, Jin X, et al. Analysis on quantum bit error rate in measurement-device-independent quantum key distribution using weak coherent states[J]. Acta Physica Sinica, 2015, 64(11): 110301.

[7] 周媛媛, 张合庆, 周学军, 等. 基于标记配对相干态光源的诱骗态量子密钥分配性能分析[J]. 物理学报, 2013, 62(20): 200302.

    周媛媛, 张合庆, 周学军, 等. 基于标记配对相干态光源的诱骗态量子密钥分配性能分析[J]. 物理学报, 2013, 62(20): 200302.

    Zhou Y Y, Zhang H Q, Zhou X J, et al. Performance analysis of decoy-state quantum key distribution with a heralded pair coherent state photon source[J]. Acta Physica Sinica, 2013, 62(20): 200302.

    Zhou Y Y, Zhang H Q, Zhou X J, et al. Performance analysis of decoy-state quantum key distribution with a heralded pair coherent state photon source[J]. Acta Physica Sinica, 2013, 62(20): 200302.

[8] 何业锋, 宋畅, 李东琪, 等. 基于指示单光子源的非对称信道量子密钥分配[J]. 光学学报, 2018, 38(3): 0327001.

    何业锋, 宋畅, 李东琪, 等. 基于指示单光子源的非对称信道量子密钥分配[J]. 光学学报, 2018, 38(3): 0327001.

    He Y F, Song C, Li D Q, et al. Asymmetric-channel quantum key distribution based on heralded single-photon sources[J]. Acta Optica Sinica, 2018, 38(3): 0327001.

    He Y F, Song C, Li D Q, et al. Asymmetric-channel quantum key distribution based on heralded single-photon sources[J]. Acta Optica Sinica, 2018, 38(3): 0327001.

[9] 康丹娜, 何业锋. 基于奇相干光源非对称信道的量子密钥分配协议[J]. 光学学报, 2017, 37(6): 0627001.

    康丹娜, 何业锋. 基于奇相干光源非对称信道的量子密钥分配协议[J]. 光学学报, 2017, 37(6): 0627001.

    Kang D N, He Y F. Quantum key distribution protocols based on asymmetric channels of odd coherent sources[J]. Acta Optica Sinica, 2017, 37(6): 0627001.

    Kang D N, He Y F. Quantum key distribution protocols based on asymmetric channels of odd coherent sources[J]. Acta Optica Sinica, 2017, 37(6): 0627001.

[10] 乔文, 高社成, 雷霆, 等. 轨道角动量模式在柚子型微结构光纤中的传输[J]. 中国激光, 2017, 44(4): 0406002.

    乔文, 高社成, 雷霆, 等. 轨道角动量模式在柚子型微结构光纤中的传输[J]. 中国激光, 2017, 44(4): 0406002.

    Qiao W, Gao S C, Lei T, et al. Transmission of orbital angular momentum modes in grapefruit-type microstructure fiber[J]. Chinese Journal of Lasers, 2017, 44(4): 0406002.

    Qiao W, Gao S C, Lei T, et al. Transmission of orbital angular momentum modes in grapefruit-type microstructure fiber[J]. Chinese Journal of Lasers, 2017, 44(4): 0406002.

[11] 朱卓丹, 张茜, 赵尚弘, 等. 预报相干光子对的测量设备无关量子密钥分发协议[J]. 激光与光电子学进展, 2017, 54(12): 122703.

    朱卓丹, 张茜, 赵尚弘, 等. 预报相干光子对的测量设备无关量子密钥分发协议[J]. 激光与光电子学进展, 2017, 54(12): 122703.

    Zhu Z D, Zhang X, Zhao S H, et al. Measurement-device-independent quantum key distribution protocols for heralded pair coherent state[J]. Laser & Optoelectronics Progress, 2017, 54(12): 122703.

    Zhu Z D, Zhang X, Zhao S H, et al. Measurement-device-independent quantum key distribution protocols for heralded pair coherent state[J]. Laser & Optoelectronics Progress, 2017, 54(12): 122703.

[12] 朱秋立, 石磊, 魏家华, 等. 自由空间量子密钥分配的背景光抑制[J]. 激光与光电子学进展, 2018, 55(6): 060004.

    朱秋立, 石磊, 魏家华, 等. 自由空间量子密钥分配的背景光抑制[J]. 激光与光电子学进展, 2018, 55(6): 060004.

    Zhu Q L, Shi L, Wei J H, et al. Background light suppression in free space quantum key distribution[J]. Laser & Optoelectronics Progress, 2018, 55(6): 060004.

    Zhu Q L, Shi L, Wei J H, et al. Background light suppression in free space quantum key distribution[J]. Laser & Optoelectronics Progress, 2018, 55(6): 060004.

[13] Brassard G, Lütkenhaus N, Mor T, et al. Limitations on practical quantum cryptography[J]. Physical Review Letters, 2000, 85(6): 1330-1333.

    Brassard G, Lütkenhaus N, Mor T, et al. Limitations on practical quantum cryptography[J]. Physical Review Letters, 2000, 85(6): 1330-1333.

[14] Sun S H, Liang L M. Experimental demonstration of an active phase randomization and monitor module for quantum key distribution[J]. Applied Physics Letters, 2012, 101(7): 071107.

    Sun S H, Liang L M. Experimental demonstration of an active phase randomization and monitor module for quantum key distribution[J]. Applied Physics Letters, 2012, 101(7): 071107.

[15] Zhao Y. Fung C H F, Qi B, et al. Quantum hacking: experimental demonstration of time-shift attack against practical quantum-key-distribution systems[J]. Physical Review A, 2008, 78(4): 042333.

    Zhao Y. Fung C H F, Qi B, et al. Quantum hacking: experimental demonstration of time-shift attack against practical quantum-key-distribution systems[J]. Physical Review A, 2008, 78(4): 042333.

[16] Makarov V, Skaar J. Faked states attack using detector efficiency mismatch on SARG04, phase-time, DPSK, and Ekert protocols[J]. Quantum Information & Computation, 2008, 8(6/7): 622-635.

    Makarov V, Skaar J. Faked states attack using detector efficiency mismatch on SARG04, phase-time, DPSK, and Ekert protocols[J]. Quantum Information & Computation, 2008, 8(6/7): 622-635.

[17] Makarov V. Controlling passively quenched single photon detectors by bright light[J]. New Journal of Physics, 2009, 11(6): 065003.

    Makarov V. Controlling passively quenched single photon detectors by bright light[J]. New Journal of Physics, 2009, 11(6): 065003.

[18] Lo H K, Curty M, Qi B. Measurement-device-independent quantum key distribution[J]. Physical Review Letters, 2012, 108(13): 130503.

    Lo H K, Curty M, Qi B. Measurement-device-independent quantum key distribution[J]. Physical Review Letters, 2012, 108(13): 130503.

[19] Tamaki K, Lo H K. Fung C H F, et al. Phase encoding schemes for measurement-device-independent quantum key distribution with basis-dependent flaw[J]. Physical Review A, 2012, 85(4): 042307.

    Tamaki K, Lo H K. Fung C H F, et al. Phase encoding schemes for measurement-device-independent quantum key distribution with basis-dependent flaw[J]. Physical Review A, 2012, 85(4): 042307.

[20] Ma X C, Sun S H, Jiang M S, et al. Gaussian-modulated coherent-state measurement-device-independent quantum key distribution[J]. Physical Review A, 2014, 89(4): 042335.

    Ma X C, Sun S H, Jiang M S, et al. Gaussian-modulated coherent-state measurement-device-independent quantum key distribution[J]. Physical Review A, 2014, 89(4): 042335.

[21] Zhou Y H, Yu Z W, Ki A, et al. Measurement-device-independent quantum key distribution via quantum blockade[J]. Scientific Reports, 2018, 8: 4115.

    Zhou Y H, Yu Z W, Ki A, et al. Measurement-device-independent quantum key distribution via quantum blockade[J]. Scientific Reports, 2018, 8: 4115.

[22] Rubenok A, Slater J A, Chan P, et al. Real-world two-photon interference and proof-of-principle QKD immune to detector attacks[J]. Physical Review Letters, 2013, 111(13): 130501.

    Rubenok A, Slater J A, Chan P, et al. Real-world two-photon interference and proof-of-principle QKD immune to detector attacks[J]. Physical Review Letters, 2013, 111(13): 130501.

[23] Ferreira da Silva T, Vitoreti D, Xavier G B, et al. . Proof-of-principle demonstration of measurement-device-independent quantum key distribution using polarization qubits[J]. Physical Review A, 2013, 88(5): 052303.

    Ferreira da Silva T, Vitoreti D, Xavier G B, et al. . Proof-of-principle demonstration of measurement-device-independent quantum key distribution using polarization qubits[J]. Physical Review A, 2013, 88(5): 052303.

[24] 颜龙, 孙豪, 赵生妹. 应用诱骗态的光子轨道角动量测量设备无关量子密钥分发协议的研究[J]. 信号处理, 2014, 30(11): 1275-1278.

    颜龙, 孙豪, 赵生妹. 应用诱骗态的光子轨道角动量测量设备无关量子密钥分发协议的研究[J]. 信号处理, 2014, 30(11): 1275-1278.

    Yan L, Sun H, Zhao S M. Study on decoyed measurement device independent quantum key distribution protocol using orbital angular momentum[J]. Journal of Signal Processing, 2014, 30(11): 1275-1278.

    Yan L, Sun H, Zhao S M. Study on decoyed measurement device independent quantum key distribution protocol using orbital angular momentum[J]. Journal of Signal Processing, 2014, 30(11): 1275-1278.

[25] 何业锋, 李东琪, 宋畅, 等. 基于奇相干光源和轨道角动量的量子密钥分配协议[J]. 中国激光, 2018, 45(7): 0712001.

    何业锋, 李东琪, 宋畅, 等. 基于奇相干光源和轨道角动量的量子密钥分配协议[J]. 中国激光, 2018, 45(7): 0712001.

    He Y F, Li D Q, Song C, et al. Quantum key distribution protocol based on odd coherent sources and orbital angular momentum[J]. Chinese Journal of Lasers, 2018, 45(7): 0712001.

    He Y F, Li D Q, Song C, et al. Quantum key distribution protocol based on odd coherent sources and orbital angular momentum[J]. Chinese Journal of Lasers, 2018, 45(7): 0712001.

[26] Agarwal G S. Generation of pair coherent states and squeezing via the competition of four-wave mixing and amplified spontaneous emission[J]. Physical Review Letters, 1986, 57(7): 827.

    Agarwal G S. Generation of pair coherent states and squeezing via the competition of four-wave mixing and amplified spontaneous emission[J]. Physical Review Letters, 1986, 57(7): 827.

[27] Dong C, Zhao S H, Shi L. Measurement device-independent quantum key distribution with heralded pair coherent state[J]. Quantum Information Processing, 2016, 15(10): 4253-4263.

    Dong C, Zhao S H, Shi L. Measurement device-independent quantum key distribution with heralded pair coherent state[J]. Quantum Information Processing, 2016, 15(10): 4253-4263.

[28] Hong C K, Ou Z Y, Mandel L. Measurement of subpicosecond time intervals between two photons by interference[J]. Physical Review Letters, 1987, 59(18): 2044-2046.

    Hong C K, Ou Z Y, Mandel L. Measurement of subpicosecond time intervals between two photons by interference[J]. Physical Review Letters, 1987, 59(18): 2044-2046.

[29] Ma X F, Razavi M. Alternative schemes for measurement-device-independent quantum key distribution[J]. Physical Review A, 2012, 86(6): 062319.

    Ma X F, Razavi M. Alternative schemes for measurement-device-independent quantum key distribution[J]. Physical Review A, 2012, 86(6): 062319.

何业锋, 杨红娟, 王登, 李东琪, 宋畅. 基于标记配对相干态和轨道角动量的量子密钥分配[J]. 光学学报, 2019, 39(4): 0427001. Yefeng He, Hongjuan Yang, Deng Wang, Dongqi Li, Chang Song. Quantum Key Distribution Based on Heralded Pair Coherent State and Orbital Angular Momentum[J]. Acta Optica Sinica, 2019, 39(4): 0427001.

本文已被 8 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!