Chinese Optics Letters, 2021, 19 (5): 052601, Published Online: Feb. 25, 2021   

Optimizing illumination’s complex coherence state for overcoming Rayleigh’s resolution limit

Author Affiliations
1 Shandong Provincial Engineering and Technical Center of Light Manipulations & Shandong Provincial Key Laboratory of Optics and Photonic Device, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
2 Department of Chemistry, Dalhousie University, Halifax, NS B3H 4R2, Canada
3 School of Physical Science and Technology & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China
4 Department of Physics, University of Miami, Coral Gables, Florida 33146, USA
Copy Citation Text

Chunhao Liang, Yashar E. Monfared, Xin Liu, Baoxin Qi, Fei Wang, Olga Korotkova, Yangjian Cai. Optimizing illumination’s complex coherence state for overcoming Rayleigh’s resolution limit[J]. Chinese Optics Letters, 2021, 19(5): 052601.

References

[1] GoodmanJ. W., Statistical Optics (Wiley, 2000).

[2] RojakF., “Two-point resolution with partially coherent light,” Ph. D. Thesis (Lowell Technological Institute, 1961).

[3] D. N. Grimes, B. J. Thompson. Two-point resolution with partially coherent light. J. Opt. Soc. Am., 1967, 57: 1330.

[4] B. J. Thompson. Image formation with partially coherent light. Prog. Opt., 1969, 7: 169.

[5] J. Garcia-Sucerquia, R. Castaneda. Spatial partially coherent imaging. J. Mod. Opt., 2002, 49: 2093.

[6] R. Castaneda. Phase space representation of spatially coherent imaging. Appl. Opt., 2008, 47: E53.

[7] T. Nakamura, C. Chang. Exact space invariant illumination for partially coherent imaging systems. J. Opt. Soc. Am. A, 2010, 27: 1953.

[8] K. Yamazoe. Two models for partially coherent imaging. Opt. Lett., 2012, 29: 2591.

[9] K. Yamazoe. Coherency matrix formulation for partially coherent imaging to evaluate the degree of coherence for image. J. Opt. Soc. Am. A, 2012, 29: 1529.

[10] S. A. Ponomarenko. Self-imaging of partially coherent light in graded-index media. Opt. Lett., 2015, 40: 566.

[11] A. S. Ostrovsky, O. Ramos-Romero, M. V. Rodriguez-Solfs. Coherent-mode representation of partially coherent imagery. Opt. Rev., 1996, 3: 492.

[12] J. van der Gracht. Simulation of partially coherent imaging by outer-product expansion. Appl. Opt., 1994, 33: 3725.

[13] K. Yamazoe. Computation theory of partially coherent imaging by stacked pupil shift matrix. J. Opt. Soc. Am. A, 2008, 25: 3111.

[14] M. Singh, H. Lajunen, J. Tervo, J. Turunen. Imaging with partially coherent light: elementary-field approach. Opt. Express, 2015, 23: 28132.

[15] Z. Tong, O. Korotkova. Beyond the classical Rayleigh limit with twisted light. Opt. Lett., 2012, 37: 2595.

[16] D. P. Brown, T. G. Brown. Partially correlated azimuthal vortex illumination: coherence and correlation measurements and effects in imaging. Opt. Express, 2008, 16: 20418.

[17] C. Liang, G. Wu, F. Wang, W. Li, Y. Cai, S. A. Ponomarenko. Overcoming the classical Rayleigh diffraction limit by controlling two-point correlations of partially coherent light sources. Opt. Express, 2017, 25: 28352.

[18] KorotkovaO., Random Beams: Theory and Applications (CRC Press, 2013).

[19] F. Gori, M. Santarsiero. Devising genuine spatial correlation functions. Opt. Lett., 2007, 32: 3531.

[20] H. Lajunen, T. Saastamoinen. Propagation characteristics of partially coherent beams with spatially varying correlations. Opt. Lett., 2011, 36: 4104.

[21] S. Sahin, O. Korotkova. Light sources generating far fields with tunable flat profiles. Opt. Lett., 2012, 37: 2970.

[22] L. Ma, S. A. Ponomarenko. Optical coherence gratings and lattices. Opt. Lett., 2014, 39: 6656.

[23] Z. Mei, O. Korotkova. Random sources for rotating spectral densities. Opt. Lett., 2017, 42: 255.

[24] M. W. Hyde. Partially coherent sources generated from the incoherent sum of fields containing random-width Bessel function. Opt. Lett., 2019, 44: 1603.

[25] Z. Mei. Hyperbolic sine-correlated beams. Opt. Express, 2019, 27: 7491.

[26] M. Hyde, S. Bose-Pillai, D. G. Voelz, X. Xiao. Generation of vector partially coherent optical sources using phase-only spatial light modulators. Phys. Rev. Appl., 2016, 6: 064030.

[27] Y. Chen, J. Gu, F. Wang, Y. Cai. Self-splitting properties of a Hermite–Gaussian correlated Schell-model beam. Phys. Rev. A, 2015, 91: 013823.

[28] Y. Chen, S. A. Ponomarenko, Y. Cai. Self-steering partially coherent beams. Sci. Rep., 2017, 7: 39957.

[29] S. Avramov-Zamurovic, C. Nelson, S. Guth, O. Korotkova. Flat-ness parameter influence on scintillation reduction for multi-Gaussian Schell-model beams propagating in turbulent air. Appl. Opt., 2016, 55: 3442.

[30] Y. Zhou, H. Xu, Y. Yuan, J. Peng, J. Qu, W. Huang. Trapping two types of particles using a Laguerre–Gaussian correlated Schell-model beam. IEEE Photon. J., 2016, 8: 6600710.

[31] T. Wu, C. Liang, F. Wang, Y. Cai. Shaping the intensity and degree of coherence of a partially coherent beam by a 4f optical system with an amplitude filter. J. Opt., 2017, 19: 124010.

[32] O. Korotkova, X. Chen. Phase structuring of the complex degree of coherence. Opt. Lett., 2018, 43: 4727.

[33] X. Chen, O. Korotkova. Phase structuring of 2D complex coherence states. Opt. Lett., 2019, 44: 2470.

[34] Y. Gu, G. Gbur. Scintillation of pseudo-Bessel correlated beams in atmospheric turbulence. J. Opt. Soc. Am. A, 2010, 27: 2621.

[35] M. Santrasiero, R. Martinez-Herrero, D. Maluenda, J. C. G. Sande, G. Piquero, F. Gori. Partially coherent sources with circular coherence. Opt. Lett., 2017, 42: 1512.

[36] Y. Cai, Y. Chen, F. Wang. Generation and propagation of partially coherent beams with nonconventional correlation functions: a review. J. Opt. Soc. Am. A, 2014, 31: 2083.

Chunhao Liang, Yashar E. Monfared, Xin Liu, Baoxin Qi, Fei Wang, Olga Korotkova, Yangjian Cai. Optimizing illumination’s complex coherence state for overcoming Rayleigh’s resolution limit[J]. Chinese Optics Letters, 2021, 19(5): 052601.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!