Photonics Research, 2018, 6 (4): 04000238, Published Online: Mar. 22, 2019   

Influences of multiphoton absorption and free-carrier effects on frequency-comb generation in normal dispersion silicon microresonators Download: 715次

Author Affiliations
1 State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics (XIOPM), Chinese Academy of Sciences (CAS), Xi’an 710119, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
3 e-mail: wfuzhang@opt.ac.cn
Copy Citation Text

Mulong Liu, Leiran Wang, Qibing Sun, Siqi Li, Zhiqiang Ge, Zhizhou Lu, Weiqiang Wang, Guoxi Wang, Wenfu Zhang, Xiaohong Hu, Wei Zhao. Influences of multiphoton absorption and free-carrier effects on frequency-comb generation in normal dispersion silicon microresonators[J]. Photonics Research, 2018, 6(4): 04000238.

References

[1] T. J. Kippenberg, R. Holzwarth, S. A. Diddams. Microresonator-based optical frequency combs. Science, 2011, 332: 555-559.

[2] A. A. Savchenkov, A. B. Matsko, L. Maleki. On frequency combs in monolithic resonators. Nanophotonics, 2016, 5: 363-391.

[3] M.-G. Suh, Q.-F. Yang, K. Y. Yang, X. Yi, K. J. Vahala. Microresonator soliton dual-comb spectroscopy. Science, 2016, 354: 600-603.

[4] P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson. Microresonator-based solitons for massively parallel coherent optical communications. Nature, 2017, 546: 274-279.

[5] A. A. Savchenkov, V. S. Ilchenko, F. Di Teodoro, P. M. Belden, W. T. Lotshaw, A. B. Matsko, L. Maleki. Generation of Kerr combs centered at 4.5  μm in crystalline microresonators pumped with quantum-cascade lasers. Opt. Lett., 2015, 40: 3468-3471.

[6] C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, T. J. Kippenberg. Mid-infrared optical frequency combs at 2.5  μm based on crystalline microresonators. Nat. Commun., 2013, 4: 1345.

[7] B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, M. Lončar. Diamond nonlinear photonics. Nat. Photonics, 2014, 8: 369-374.

[8] S. H. Lee, D. Y. Oh, Q.-F. Yang, B. Shen, H. Wang, K. Y. Yang, Y. H. Lai, X. Yi, K. Vahala. Towards visible soliton microcomb generation. Nat. Commun., 2017, 8: 1295.

[9] J. Li, H. Lee, T. Chen, K. J. Vahala. Low-pump-power, low-phase-noise, and microwave to millimeter-wave repetition rate operation in microcombs. Phys. Rev. Lett., 2012, 109: 233901.

[10] H. Jung, C. Xiong, K. Y. Fong, X. Zhang, H. X. Tang. Optical frequency comb generation from aluminum nitride microring resonator. Opt. Lett., 2013, 38: 2810-2813.

[11] H. Jung, R. Stoll, X. Guo, D. Fischer, H. X. Tang. Green, red, and IR frequency comb line generation from single IR pump in AlN microring resonator. Optica, 2014, 1: 396-399.

[12] KarpovM.PfeifferM. H. P.KippenbergT. J., “Photonic chip-based soliton frequency combs covering the biological imaging window,” arXiv: 1706.06445 (2017).

[13] Q. Li, T. C. Briles, D. A. Westly, T. E. Drake, J. R. Stone, B. R. Ilic, S. A. Diddams, S. B. Papp, K. Srinivasan. Stably accessing octave-spanning microresonator frequency combs in the soliton regime. Optica, 2017, 4: 193-203.

[14] L. Wang, L. Chang, N. Volet, M. H. P. Pfeiffer, M. Zervas, H. Guo, T. J. Kippenberg, J. E. Bowers. Frequency comb generation in the green using silicon nitride microresonators. Laser Photon. Rev., 2016, 10: 631-638.

[15] A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras. Silicon-chip mid-infrared frequency comb generation. Nat. Commun., 2015, 6: 6299.

[16] M. Yu, Y. Okawachi, A. G. Griffith, M. Lipson, A. L. Gaeta. Mode-locked mid-infrared frequency combs in a silicon microresonator. Optica, 2016, 3: 854-860.

[17] I. H. Agha, Y. Okawachi, A. L. Gaeta. Theoretical and experimental investigation of broadband cascaded four-wave mixing in high-Q microspheres. Opt. Express, 2009, 17: 16209-16215.

[18] K. Luke, Y. Okawachi, M. R. E. Lamont, A. L. Gaeta, M. Lipson. Broadband mid-infrared frequency comb generation in a Si3N4 microresonator. Opt. Lett., 2015, 40: 4823-4826.

[19] A. Coillet, I. Balakireva, R. Henriet, K. Saleh, L. Larger, J. M. Dudley, C. R. Menyuk, Y. K. Chembo. Azimuthal Turing patterns, bright and dark cavity solitons in Kerr combs generated with whispering-gallery-mode resonators. IEEE Photon. J., 2013, 5: 6100409.

[20] W. Liang, A. A. Savchenkov, V. S. Ilchenko, D. Eliyahu, D. Seidel, A. B. Matsko, L. Maleki. Generation of a coherent near-infrared Kerr frequency comb in a monolithic microresonator with normal GVD. Opt. Lett., 2014, 39: 2920-2923.

[21] X. Xue, Y. Xuan, P. H. Wang, Y. Liu, D. E. Leaird, M. Qi, A. M. Weiner. Normal-dispersion microcombs enabled by controllable mode interactions. Laser Photon. Rev., 2015, 9: L23-L28.

[22] S. W. Huang, H. Zhou, J. Yang, J. F. McMillan, A. Matsko, M. Yu, D. L. Kwong, L. Maleki, C. W. Wong. Mode-locked ultrashort pulse generation from on-chip normal dispersion microresonators. Phys. Rev. Lett., 2015, 114: 053901.

[23] X. Xue, Y. Xuan, Y. Liu, P.-H. Wang, S. Chen, J. Wang, D. E. Leaird, M. Qi, A. M. Weiner. Mode-locked dark pulse Kerr combs in normal-dispersion microresonators. Nat. Photonics, 2015, 9: 594-600.

[24] D. C. Harris. Durable 3-5  μm transmitting infrared window materials. Infrared Phys. Technol., 1998, 39: 185-201.

[25] X. Gai, Y. Yu, B. Kuyken, P. Ma, S. J. Madden, J. Campenhout, P. Verheyen, G. Roelkens, R. Baets, B. Luther-Davies. Nonlinear absorption and refraction in crystalline silicon in the mid-infrared. Laser Photon. Rev., 2013, 7: 1054-1064.

[26] T. Hansson, D. Modotto, S. Wabnitz. Mid-infrared soliton and Raman frequency comb generation in silicon microrings. Opt. Lett., 2014, 39: 6747-6750.

[27] R. K. W. Lau, M. R. E. Lamont, Y. Okawachi, A. L. Gaeta. Effects of multiphoton absorption on parametric comb generation in silicon microresonators. Opt. Lett., 2015, 40: 2778-2781.

[28] D. V. Strekalov, N. Yu. Generation of optical combs in a whispering gallery mode resonator from a bichromatic pump. Phys. Rev. A, 2009, 79: 041805.

[29] T. Hansson, S. Wabnitz. Bichromatically pumped microresonator frequency combs. Phys. Rev. A, 2014, 90: 013811.

[30] A. D. Bristow, N. Rotenberg, H. M. van Driel. Two-photon absorption and Kerr coefficients of silicon for 850-2200  nm. Appl. Phys. Lett., 2007, 90: 191104.

[31] M. Dinu, F. Quochi, H. Garcia. Third-order nonlinearities in silicon at telecom wavelengths. Appl. Phys. Lett., 2003, 82: 2954-2956.

[32] A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, A. L. Gaeta. Tailored anomalous group-velocity dispersion in silicon channel waveguides. Opt. Express, 2006, 14: 4357-4362.

[33] R. Soref, B. Bennett. Electrooptical effects in silicon. IEEE J. Quantum Electron., 1987, 23: 123-129.

[34] T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, T. J. Kippenberg. Temporal solitons in optical microresonators. Nat. Photonics, 2014, 8: 145-152.

[35] X. Yi, Q.-F. Yang, K. Y. Yang, M.-G. Suh, K. Vahala. Soliton frequency comb at microwave rates in a high-Q silica microresonator. Optica, 2015, 2: 1078-1085.

[36] E. Lucas, H. Guo, J. D. Jost, M. Karpov, T. J. Kippenberg. Detuning-dependent properties and dispersion-induced instabilities of temporal dissipative Kerr solitons in optical microresonators. Phys. Rev. A, 2017, 95: 043822.

[37] S. Pearl, N. Rotenberg, H. M. van Driel. Three photon absorption in silicon for 2300-3300  nm. Appl. Phys. Lett., 2008, 93: 131102.

[38] F. Gholami, S. Zlatanovic, A. Simic, L. Liu, D. Borlaug, N. Alic, M. P. Nezhad, Y. Fainman, S. Radic. Third-order nonlinearity in silicon beyond 2350  nm. Appl. Phys. Lett., 2011, 99: 081102.

[39] R. Claps, V. Raghunathan, D. Dimitropoulos, B. Jalali. Influence of nonlinear absorption on Raman amplification in silicon waveguides. Opt. Express, 2004, 12: 2774-2780.

[40] X. Xue, P. H. Wang, Y. Xuan, M. Qi, A. M. Weiner. Microresonator Kerr frequency combs with high conversion efficiency. Laser Photon. Rev., 2017, 11: 1600276.

[41] A. G. Griffith, M. Yu, Y. Okawachi, J. Cardenas, A. Mohanty, A. L. Gaeta, M. Lipson. Coherent mid-infrared frequency combs in silicon-microresonators in the presence of Raman effects. Opt. Express, 2016, 24: 13044-13050.

[42] G. Lihachev, M. L. Gorodetsky, T. J. Kippenberg, V. E. Lobanov. Frequency combs and platicons in optical microresonators with normal GVD. Opt. Express, 2015, 23: 7713-7721.

Mulong Liu, Leiran Wang, Qibing Sun, Siqi Li, Zhiqiang Ge, Zhizhou Lu, Weiqiang Wang, Guoxi Wang, Wenfu Zhang, Xiaohong Hu, Wei Zhao. Influences of multiphoton absorption and free-carrier effects on frequency-comb generation in normal dispersion silicon microresonators[J]. Photonics Research, 2018, 6(4): 04000238.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!