光学学报, 2016, 36 (6): 0601003, 网络出版: 2016-06-06   

激光雷达遥感地表气溶胶消光吸湿因子及其对波长的依赖特性 下载: 542次

Remote Sensing Aerosol Extinction Hygroscopic Growth Factor and Its Wavelength Dependence Using Lidar
作者单位
1 中国科学院合肥物质科学研究院合肥技术创新工程院, 安徽 合肥 230031
2 中国科学院合肥物质科学研究院医学物理与技术中心, 安徽 合肥 230031
引用该论文

伯广宇, 李爱悦, 徐赤东. 激光雷达遥感地表气溶胶消光吸湿因子及其对波长的依赖特性[J]. 光学学报, 2016, 36(6): 0601003.

Bo Guangyu, Li Aiyue, Xu Chidong. Remote Sensing Aerosol Extinction Hygroscopic Growth Factor and Its Wavelength Dependence Using Lidar[J]. Acta Optica Sinica, 2016, 36(6): 0601003.

参考文献

[1] Gasparini R, Li R, Collins D R. Integration of size distributions and size-resolved hygroscopicity measured during the Houston Supersite for compositional categorization of the aerosol[J]. Atmospheric Environment, 2004, 38(20): 3285-3303.

[2] Robert A, Kotchenmther P, Hobbs V, et al.. Humidification factors for atmospheric aerosol off the mid-Atlantic coast of united states[J]. J Geophys Res, 1999, 104(2): 2239-2251.

[3] 刘新罡, 张远航. 大气气溶胶吸湿性质国内外研究进展[J]. 气候与环境研究, 2010, 15(6): 808-816.

    Liu Xingang, Zhang Yuanhang. Advances in research on aerosol hygroscopic properties at home and abroad[J]. Climatic and Environmental Research, 2010,15(6): 808-816.

[4] Pahlow M, Feingold G, Jefferson A, et al.. Comparison between lidar and nephelometer measurements of aerosol hygroscopicity at the southern great plains atmospheric radiation measurement site[J]. J Geophys Res, 2006, 111(5): 237-253.

[5] Graham Feingold. Aerosol hygroscopic properties as measured by lidar and comparison with in situ measurements[J]. J Geophys Res, 2003,108(D11): AAC1.

[6] Massoli P, Bates T S, Quinn P K, et al.. Aerosol optical and hygroscopic properties during TexAQS-GoMACCS 2006 and their impact on aerosol direct radiative forcing[J]. J Geophys Res, 2009, 114(D7): D00F07.

[7] 陶金花, 王子峰, 徐谦, 等. 北京地区颗粒物质量消光吸湿增长模型研究[J]. 遥感学报, 2015, 19(1): 12-24.

    Tao Jinhua, Wang Zifeng, Xu Qian, et al.. Particulate matter mass extinction hygroscopic growth model in Beijing[J]. Journal of Remote Sensing, 2015,19(1): 12-24.

[8] Wang Z, Chen L, Tao J, et al.. Satellite-based estimation of regional particulate matter (PM) in Beijing using vertical and RH correcting method[J]. Remote Sens Environ, 2010, 114(1): 50-63.

[9] Wang Zifeng, Chen Liangfu, Tao Jinhua. An empirical method of RH correction for satellite estimation of ground-level PM concentrations[J]. Atmospheric Environment, 2014, 95: 71-81.

[10] Wang J, Martin S T. Satellite characterization of urban aerosols: Importance of including hygroscopicity and mixing state in the retrieval algorithms[J]. J Geophys Res, 2007, 112(D17): D17203.

[11] Hnel G. The properties of atmospheric aerosol particles as functions of the RH at thermodynamic equilibrium with the surrounding moist air[J]. Advances in Geophysics, 1976, 19: 73-188.

[12] Mackinnon D J. The effect of hygroscopic particles on the backscattered power from a laser beam[J]. J Atmos Sci, 1969, 26(3): 500-510.

[13] Hand J L, Malm W C. Review of aerosol mass scattering efficiencies from ground-based measurements since 1990[J]. J Geophys Res, 2007, 112(D16): D16203.

[14] Titos G, Lyamani H, Cazorla A, et al.. Study of the relative humidity dependence of aerosol light-scattering in southern Spain[J]. Tellus B, 2014, 66(8): 136-140.

[15] Liu Xingang, Gu Jianwei, Li Yunpeng, et al.. Increase of aerosol scattering by hygroscopic growth: Observation, modeling, and implications on visibility[J]. Atmospheric Research, 2013, 132-133: 91-101.

[16] Pan X L, Yan P, Tang J, et al.. Observational study of influence of aerosol hygroscopic growth on scattering coefficient over rural area near Beijing mega-city[J]. Atmospheric Chemistry and Physics, 2009, 9(19): 7519-7530.

[17] Jung J, Lee K Y, Cayetano M G, et al.. Optical and hygroscopic properties of long-range transported haze plumes observed at Deokjeok Island off the west coast of the Korean Peninsula under the Asian continental outflows[J]. J Geophys Res, 2015,120(17): 8861-8877.

[18] Fernández A J, Apituley A, Veselovskii I, et al.. Study of aerosol hygroscopic events over the Cabauw experimental site for atmospheric research (CESAR) using the multi-wavelength Raman lidar Caeli[J]. Atmospheric Environment, 2015, 120: 484-498.

[19] Wulfmeyer V, Feingold G. On the relationship between relative humidity and particle backscattering coefficient in the marine boundary layer determined with differential absorption lidar[J]. J Geophys Res Atmos, 2000, 105(D4): 4729-4741.

[20] Granados-Muoz M J, Navas-Guzmán F, Bravo-Aranda J A, et al.. Hygroscopic growth of atmospheric aerosol particles based on active remote sensing and radio sounding measurements: Selected cases in southeastern Spain[J]. Atmos Meas Tech, 2015, 8: 705-718.

[21] Stock M, Cheng Y F, Birmili W, et al.. Hygroscopic properties of atmospheric aerosol particles over the Eastern Mediterranean: Implications for regional direct radiative forcing under clean and polluted conditions[J]. Atmos Chem Phys, 2011, 11: 4251-4271.

[22] Snider J R, Petters M D. Optical particle counter measurement of marine aerosol hygroscopic growth[J]. Atmospheric Chemistry & Physics, 2008, 8(7): 1949-1962.

[23] Heintzenberg J, Mabling A, Birmili W. The connection between hygroscopic and optical particle properties in the atmospheric aerosol[J]. Geophysical Research Letters, 2001, 28(19): 3649-3651.

[24] 伯广宇, 刘东, 吴德成, 等. 双波长激光雷达探测典型雾霾气溶胶的光学和吸湿性质[J]. 中国激光, 2014, 41(1): 0113001.

    Bo Guangyu, Liu Dong, Wu Decheng, et al.. Two-wavelength lidar for observation of aerosol optical and hygroscopic properties during haze and fog weather[J]. Chinese J Lasers, 2014, 41(1): 0113001.

[25] Veselovskii I, Whiteman D N, Kolgotin A, et al.. Demonstration of aerosol property profiling by multiwavelength lidar under varying relative humidity conditions[J]. Journal of Atmospheric & Oceanic Technology, 2009, 26(8): 1543-1556.

[26] Zhang X, Massoli P, Quinn P K, et al.. Hygroscopic growth of submicron and supermicron aerosols in the marine boundary layer[J]. J Geophys Res Atmos, 2014, 119(13): 8384-8399.

[27] Day D, Malm W. Aerosol light scattering measurements as a function of relative humidity: A comparison between measurements made at three different sites[J]. Atmospheric Environment, 2001, 35(30): 5169-5176.

[28] Kotchenruther R, Hobbs P, Hegg D. Humidification factors for atmospheric aerosol off the mid-Atlantic coast of United States[J]. J Geophys Res Atmos, 1999, 104(D2): 2239-2251.

[29] Rodrigues P, Landulfo E, Gandu A, et al.. Indirect aerosol hygroscopic growth observations with a backscattering lidar, part II: Five day breeze onset data analyses[C]. SPIE, 2011, 8182: 81820U.

[30] 伯广宇, 谢晨波, 王邦新, 等. 相对湿度影响地表气溶胶波长指数的个例研究[J]. 中国激光, 2015, 42(7): 0713002.

    Bo Guangyu, Xie Chenbo, Wang Bangxin, et al.. Case study of the relationship between aerosol Angstrom exponent and relative humidity[J]. Chinese J Lasers, 2015, 42(7): 0713002.

[31] Loeb N G, Schuster G L. An observational study of the relationship between cloud, aerosol and meteorology in broken low-level cloud conditions[J]. J Geophys Res, 2008, 113(D14): D14214.

[32] 张思远, 吴开亚. 合肥市PM2.5污染特征及影响因素分析研究[J]. 环境科学与管理, 2015, 41(1): 51-56.

    Zhang Siyuan, Wu Kaiya. Analysis of pollution characteristics and influencing factors of PM2.5 in Hefei[J]. Environmental Science and Management, 2015, 41(1): 51-56.

伯广宇, 李爱悦, 徐赤东. 激光雷达遥感地表气溶胶消光吸湿因子及其对波长的依赖特性[J]. 光学学报, 2016, 36(6): 0601003. Bo Guangyu, Li Aiyue, Xu Chidong. Remote Sensing Aerosol Extinction Hygroscopic Growth Factor and Its Wavelength Dependence Using Lidar[J]. Acta Optica Sinica, 2016, 36(6): 0601003.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!