无机材料学报, 2019, 34 (1): 49, 网络出版: 2021-02-04   

铜纳米线的合成、优化及其透明电极的应用 下载: 663次

Synthesis, Optimization of Cu Nanowires and Application of Its Transparent Electrodes
作者单位
Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
引用该论文

Xiao WANG, Ran-Ran WANG, Liang-Jing SHI, Jing SUN, , , , . 铜纳米线的合成、优化及其透明电极的应用[J]. 无机材料学报, 2019, 34(1): 49.

Xiao WANG, Ran-Ran WANG, Liang-Jing SHI, Jing SUN, , , , . Synthesis, Optimization of Cu Nanowires and Application of Its Transparent Electrodes[J]. Journal of Inorganic Materials, 2019, 34(1): 49.

参考文献

[1] CHENG HY, LUOJ, HUANG LQ, et al.Preparation of flexible dye-sensitized solar cells based on hierarchical structure ZnO nanosheets. Journal of Inorganic Materials, 2018, 33(5): 507-514.

[2] ZHANGJ, YANGX, DENGH, et al. Low-dimensional halide perovskites and their advanced optoelectronic applications. Nano-Micro Letters, 2017, 9(3): 36-1-26.

[3] GUERREROA, GARCIA-BELMONTE G. Recent advances to understand morphology stability of organic photovoltaics. Nano- Micro Letters, 2016, 9(1): 10-1-16.

[4] CHEND, LÜ JG, HUANG JY, et al.Performances of GaN-based LEDs with AZO films as transparent electrodes. Journal of Inorganic Materials, 2013, 28(6): 649-652.

[5] HAN SS, LIU LY, SHAN YK, et al.Research of graphene/ antireflection nanostructure composite transparent conducting films. Journal of Inorganic Materials, 2017, 32(2): 197-202.

[6] HUANGW, ZHU JY, LIH, et al.Preparation and characterization of graphene/carbon nanotube hybrid thin films by drop-coating. Journal of Inorganic Materials, 2017, 32(2): 203-209.

[7] LEEJ, LEEP, LEEH, et al.Very long Ag nanowire synthesis and its application in a highly transparent, conductive and flexible metal electrode touch panel. Nanoscale, 2012, 4(20): 6408-6414.

[8] HU LB, WUH, CUIY.Metal nanogrids, nanowires, and nanofibers for transparent electrodes. MRS Bulletin, 2011, 36(10): 760-765.

[9] LIS, CHENY, HUANGL, et al.Large-scale synthesis of well-dispersed copper nanowires in an electric pressure cooker and their application in transparent and conductive networks. Inorganic Chemistry, 2014, 53(9): 4440-4444.

[10] YANG HJ, HE SY, TUAN HY.Self-seeded growth of five-fold twinned copper nanowires: mechanistic study, characterization, and SERS applications. Langmuir, 2014, 30(2): 602-610.

[11] CHANGY, LYE ML, ZENG HC.Large-scale synthesis of high-quality ultralong copper nanowires. Langmuir, 2005, 21(9): 3746-3748.

[12] YES, RATHMELL AR, HA YC, et al.The role of cuprous oxide seeds in the one-pot and seeded syntheses of copper nanowires. Small, 2014, 10(9): 1771-1778.

[13] RATHMELL AR, WILEY BJ.The synthesis and coating of long, thin copper nanowires to make flexible, transparent conducting films on plastic substrates. Advanced Materials, 2011, 23(41): 4798-4803.

[14] ZHANGD, WANGR, WENM, et al.Synthesis of ultralong copper nanowires for high-performance transparent electrodes. Journal of the American Chemical Society, 2012, 134(35): 14283-14286.

[15] GUOH, LINN, CHENY, et al. Copper nanowires as fully transparent conductive electrodes. Scientific Reports, 2013, 3: 2323-1-8.

[16] WANGX, WANGR, SHIL, et al.Kinetically controlled synthesis of Cu nanowires with tunable diameters and their applications in transparent electrodes. Journal of Materials Chemistry C, 2018, 6(5): 1048-1056.

[17] LIUZ, YANGY, LIANGJ, et al.Synthesis of copper nanowires via a complex-surfactant-assisted hydrothermal reduction process. The Journal of Physical Chemistry B, 2003, 107(46): 12658-12661.

[18] YES, RATHMELL AR, STEWART IE, et al.A rapid synthesis of high aspect ratio copper nanowires for high-performance transparent conducting films. Chemical Communications, 2014, 50(20): 2562-2564.

[19] ZHANGX, ZHANGD, NIX, et al.One-step preparation of copper nanorods with rectangular cross sections. Solid State Communications, 2006, 139(8): 412-414.

[20] JINM, HEG, ZHANGH, et al.Shape-controlled synthesis of copper nanocrystals in an aqueous solution with glucose as a reducing agent and hexadecylamine as a capping agent. Angewandte Chemie, 2011, 50(45): 10560-10564.

[21] CUIF, YUY, DOUL, et al.Synthesis of ultrathin copper nanowires using tris(trimethylsilyl)silane for high-performance and low-haze transparent conductors. Nano Letters, 2015, 15(11): 7610-7615.

[22] RATHMELL AR, NGUYENM, CHIM, et al.Synthesis of oxidation- resistant cupronickel nanowires for transparent conducting nanowire networks. Nano Letters, 2012, 12(6): 3193-3199.

[23] WANGX, WANGR, SHIL, et al.Synthesis of metal/bimetal nanowires and their applications as flexible transparent electrodes. Small, 2015, 11(36): 4737-4744.

[24] SORELS, LYONS PE, DES, et al. The dependence of the optoelectrical properties of silver nanowire networks on nanowire length and diameter.Nanotechnology, 2012, 23(18): 185201-1-10.

[25] LAGRANGEM, LANGLEY DP, GIUSTIG, et al.Optimization of silver nanowire-based transparent electrodes: effects of density, size and thermal annealing. Nanoscale, 2015, 7(41): 17410-17423.

[26] KIMA, WONY, WOOK, et al.All-solution-processed indium- free transparent composite electrodes based on Ag nanowire and metal oxide for thin-film solar cells. Advanced Functional Materials, 2014, 24(17): 2462-2471.

[27] FINN DJ, LOTYAM, COLEMAN JN.Inkjet printing of silver nanowire networks. ACS Applied Materials & Interfaces, 2015, 7(17): 9254-9261.

[28] LUH, LINJ, WUN, et al. Inkjet printed silver nanowire network as top electrode for semi-transparent organic photovoltaic devices. Applied Physics Letters, 2015, 106(9): 093302-1-4.

[29] BELLEW AT, BELL AP, MCCARTHY EK, et al.Programmability of nanowire networks. Nanoscale, 2014, 6(16): 9632-9639.

[30] SCARDACIV, COULLR, LYONS PE, et al.Spray deposition of highly transparent, low-resistance networks of silver nanowires over large areas. Small, 2011, 7(18): 2621-2628.

[31] HAUGER TC, AL-RAFIA S M, BURIAK J M. Rolling silver nanowire electrodes: simultaneously addressing adhesion, roughness, and conductivity. ACS Applied Materials & Interfaces, 2013, 5(23): 12663-12671.

[32] BORCHERT JW, STEWART IE, YES, et al.Effects of length dispersity and film fabrication on the sheet resistance of copper nanowire transparent conductors. Nanoscale, 2015, 7(34): 14496-14504.

[33] KOGAH, NOGIM, KOMODAN, et al. Uniformly connected conductive networks on cellulose nanofiber paper for transparent paper electronics. npg Asia Mater., 2014, 6(3): e93-1-8.

[34] DENGB, HSU PC, CHENG, et al.Roll-to-roll encapsulation of metal nanowires between graphene and plastic substrate for high-performance flexible transparent electrodes. Nano Letters, 2015, 15(6): 4206-4213.

[35] WONY, KIMA, YANGW, et al.A highly stretchable, helical copper nanowire conductor exhibiting a stretchability of 700%. npgAsia Mater., 2014, 6(9): e132-e132.

[36] DINGS, JIUJ, GAOY, et al.One-step fabrication of stretchable copper nanowire conductors by a fast photonic sintering technique and its application in wearable devices. ACS Applied Materials & Interfaces, 2016, 8(9): 6190-6199.

[37] YES, RATHMELL AR, CHENZ, et al.Metal nanowire networks: the next generation of transparent conductors. Advanced Materials, 2014, 26(39): 6670-6687.

[38] WONY, KIMA, LEED, et al. Annealing-free fabrication of highly oxidation-resistive copper nanowire composite conductors for photovoltaics. npg Asia Materials, 2014, 6: e105-1-9.

[39] TAOA, KIMF, HESSC, et al.Langmuir-Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy. Nano Letters, 2003, 3(9): 1229-1233.

[40] LIU JW, WANG JL, WANG ZH, et al.Manipulating nanowire assembly for flexible transparent electrodes. Angewandte Chemie, 2014, 53(49): 13477-13482.

[41] KANGS, KIMT, CHOS, et al.Capillary printing of highly aligned silver nanowire transparent electrodes for high-performance optoelectronic devices. Nano Letters, 2015, 15(12): 7933-7942.

[42] JASON NN, SHENW, CHENGW.Copper nanowires as conductive ink for low-cost draw-on electronics. ACS Applied Materials & Interfaces, 2015, 7(30): 16760-16766.

[43] GARNETT EC, CAIW, CHA JJ, et al.Self-limited plasmonic welding of silver nanowire junctions. Nature Materials, 2012, 11(3): 241-249.

[44] BELL AP, FAIRFIELD JA, MCCARTHY EK, et al.Quantitative study of the photothermal properties of metallic nanowire networks. ACS Nano, 2015, 9(5): 5551-5558.

[45] HANS, HONGS, HAMJ, et al.Fast plasmonic laser nanowelding for a Cu-nanowire percolation network for flexible transparent conductors and stretchable electronics. Advanced Materials, 2014, 26(33): 5808-5814.

[46] SONG TB, CHENY, CHUNG CH, et al.Nanoscale Joule heating and electromigration enhanced ripening of silver nanowire contacts. ACS Nano, 2014, 8(3): 2804-2811.

[47] MAIZEK, DAS SR, SADEQUES, et al. Super-Joule heating in graphene and silver nanowire network. Applied Physics Letters, 2015, 106(14): 143104-1-6.

[48] WANGR, ZHAIH, WANGT, et al.Plasma-induced nanowelding of a copper nanowire network and its application in transparent electrodes and stretchable conductors. Nano Research, 2016, 9(7): 2138-2148.

[49] LUH, ZHANGD, RENX, et al.Selective growth and integration of silver nanoparticles on silver nanowires at room conditions for transparent nano-network electrode. ACS Nano, 2014, 8(10): 10980-10987.

[50] LU HF, ZHANGD, CHENG JQ, et al.Locally welded silver nano-network transparent electrodes with high operational stability by a simple alcohol-based chemical approach. Advanced Functional Materials, 2015, 25(27): 4211-4218.

[51] XIONGW, LIUH, CHENY, et al.Highly conductive, air-stable silver nanowire@iongel composite films toward flexible transparent electrodes. Advanced Materials, 2016, 28(33): 7167-7172.

[52] WANGX, WANGR, ZHAIH, et al.Room-temperature surface modification of Cu nanowires and their applications in transparent electrodes, SERS-based sensors, and organic solar cells. ACS Applied Materials & Interfaces, 2016, 8(42): 28831-28837.

[53] ZHAIH, LIY, CHENL, et al.Copper nanowire-TiO2-polyacrylate composite electrodes with high conductivity and smoothness for flexible polymer solar cells. Nano Research, 2018, 11(4): 1895-1904.

[54] ZHAIH, LIY, CHENL, et al.Semi-transparent polymer solar cells with all-copper nanowire electrodes. Nano Research, 2018, 11(4): 1956-1966.

[55] ZHAIH, WANGR, WANGW, et al.Novel fabrication of copper nanowire/cuprous oxidebased semiconductor-liquid junction solar cells. Nano Research, 2015, 8(10): 3205-3215.

[56] HSU PC, LIUX, LIUC, et al.Personal thermal management by metallic nanowire-coated textile. Nano Letters, 2015, 15(1): 365-371.

[57] GUPTAR, RAO KD, KIRUTHIKAS, et al.Visibly transparent heaters. ACS Applied Materials & Interfaces, 2016, 8(20): 12559-12575.

[58] KANGJ, KIMH, KIM KS, et al.High-performance graphene- based transparent flexible heaters. Nano Letters, 2011, 11(12): 5154-5158.

[59] JANASD, KOZIOL KK.A review of production methods of carbon nanotube and graphene thin films for electrothermal applications. Nanoscale, 2014, 6(6): 3037-3045.

[60] CELLEC, MAYOUSSEC, MOREAUE, et al.Highly flexible transparent film heaters based on random networks of silver nanowires. Nano Research, 2012, 5(6): 427-433.

[61] ZHAIH, WANGR, WANGX, et al.Transparent heaters based on highly stable Cu nanowire films. Nano Research, 2016, 9(12): 3924-3936.

[62] IM HG, JUNG SH, JINJ, et al.Flexible transparent conducting hybrid film using a surface-embedded copper nanowire network: a highly oxidation-resistant copper nanowire electrode for flexible optoelectronics. ACS Nano, 2014, 8(10): 10973-10979.

[63] CHENGY, WANGS, WANGR, et al.Copper nanowire based transparent conductive films with high stability and superior stretchability. Journal of Materials Chemistry C, 2014, 2(27): 5309-5316.

[64] WANGT, WANGR, CHENGY, et al.Quasi in situ polymerization to fabricate copper nanowire-based stretchable conductor and its applications. ACS Applied Materials & Interfaces, 2016, 8(14): 9297-9304.

[65] CHENZ, RATHMELL AR, YES, et al.Optically transparent water oxidation catalysts based on copper nanowires. Angewandte Chemie International Edition, 2013, 52(51): 13708-13711.

[66] XIAOS, LIUP, ZHUW, et al.Copper nanowires: a substitute for noble metals to enhance photocatalytic H2 generation. Nano Letters, 2015, 15(8): 4853-4858.

[67] PARK SG, MUNC, LEEM, et al.3D hybrid plasmonic nanomaterials for highly efficient optical absorbers and sensors. Advanced Materials, 2015, 27(29): 4290-4295.

, , , , , , , . 铜纳米线的合成、优化及其透明电极的应用[J]. 无机材料学报, 2019, 34(1): 49. Xiao WANG, Ran-Ran WANG, Liang-Jing SHI, Jing SUN, , , , . Synthesis, Optimization of Cu Nanowires and Application of Its Transparent Electrodes[J]. Journal of Inorganic Materials, 2019, 34(1): 49.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!