Photonics Research, 2018, 6 (3): 03000220, Published Online: Jul. 10, 2018  

Optical properties and applications for MoS2-Sb2Te3-MoS2 heterostructure materials Download: 871次

Author Affiliations
1 State Key Laboratory of Information Photonics and Optical Communications, School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
3 Beijing Computational Science Research Center, Beijing 100193, China
4 School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100083, China
5 e-mail: mlei@bupt.edu.cn
6 e-mail: limin.liu@csrc.ac.cn
Copy Citation Text

Wenjun Liu, Ya-Nan Zhu, Mengli Liu, Bo Wen, Shaobo Fang, Hao Teng, Ming Lei, Li-Min Liu, Zhiyi Wei. Optical properties and applications for MoS2-Sb2Te3-MoS2 heterostructure materials[J]. Photonics Research, 2018, 6(3): 03000220.

References

[1] A. K. Geim, K. S. Novoselov. The rise of grapheme. Nat. Mater., 2007, 6: 183-191.

[2] F. N. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, P. Avouris. Ultrafast graphene photodetector. Nat. Nanotechnol., 2009, 4: 839-843.

[3] F. Bonaccorso, Z. Sun, T. Hasan, A. C. Ferrari. Graphene photonics and optoelectronics. Nat. Photonics, 2010, 4: 611-622.

[4] Q. L. Bao, H. Zhang, B. Wang, Z. H. Ni, C. Lim, Y. Wang, D. Y. Tang, K. P. Loh. Broadband graphene polarizer. Nat. Photonics, 2011, 5: 411-415.

[5] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, M. S. Strano. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol., 2012, 7: 699-712.

[6] A. Martinez, Z. Sun. Nanotube and graphene saturable absorbers for fibre lasers. Nat. Photonics, 2013, 7: 842-845.

[7] F. N. Xia, H. Wang, Y. C. Jia. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun., 2014, 5: 4458.

[8] F. N. Xia, H. Wang, D. Xiao, M. Dubey, A. Ramasubramaniam. Two dimensional material nanophotonics. Nat. Photonics, 2014, 8: 899-907.

[9] Z. P. Sun, A. Martinez, F. Wang. Optical modulators with 2D layered materials. Nat. Photonics, 2016, 10: 227-238.

[10] T. Hasan, Z. P. Sun, F. Q. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, A. C. Ferrari. Nanotube-polymer composites for ultrafast photonics. Adv. Mater., 2009, 21: 3874-3899.

[11] Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, D. Y. Tang. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv. Funct. Mater., 2009, 19: 3077-3083.

[12] Z. P. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Q. Wang, F. Bonaccorso, D. M. Basko, A. C. Ferrari. Graphene mode-locked ultrafast laser. ACS Nano, 2010, 4: 803-810.

[13] G. Sobon, J. Sotor, K. M. Abramski. Passive harmonic mode-locking in Er-doped fiber laser based on graphene saturable absorber with repetition rates scalable to 2.22  GHz. Appl. Phys. Lett., 2012, 100: 161109.

[14] F. Bonaccorso, Z. Sun. Solution processing of graphene, topological insulators and other 2D crystals for ultrafast photonics. Opt. Mater. Express, 2014, 4: 63-78.

[15] J. Lee, J. Koo, Y. M. Jhon, J. H. Lee. A femtosecond pulse erbium fiber laser incorporating a saturable absorber based on bulk-structured Bi2Te3 topological insulator. Opt. Express, 2014, 22: 6165-6173.

[16] F. H. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, M. Polini. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol., 2014, 9: 780-793.

[17] S. X. Wang, H. H. Yu, H. J. Zhang, A. Z. Wang, M. W. Zhao, Y. X. Chen, L. M. Mei, J. Y. Wang. Broadband few-layer MoS2 saturable absorbers. Adv. Mater., 2014, 26: 3538-3544.

[18] H. H. Yu, H. Zhang, Y. C. Wang, C. J. Zhao, B. L. Wang, S. C. Wen, H. J. Zhang, J. Y. Wang. Topological insulator as an optical modulator for pulsed solid-state lasers. Laser Photon. Rev., 2013, 7: L77-L83.

[19] D. A. Smirnova, I. V. Shadrivov, A. I. Smirnov, Y. S. Kivshar. Dissipative plasmon-solitons in multilayer grapheme. Laser Photon. Rev., 2014, 8: 291-296.

[20] H. B. Jiang, Y. L. Zhang, Y. Liu, X. Y. Fu, Y. F. Li, Y. Q. Liu, C. H. Li, H. B. Sun. Bioinspired few-layer graphene prepared by chemical vapor deposition on femtosecond laser-structured Cu foil. Laser Photon. Rev., 2016, 10: 441-450.

[21] F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, A. C. Ferrari. Wideband-tuneable, nanotube mode-locked, fibre laser. Nat. Nanotechnol., 2008, 3: 738-742.

[22] Z. Q. Luo, D. D. Wu, B. Xu, H. Y. Xu, Z. P. Cai, J. Peng, J. Weng, S. Xu, C. H. Zhu, F. Q. Wang, Z. P. Sun, H. Zhang. Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers. Nanoscale, 2016, 8: 1066-1072.

[23] R. I. Woodward, E. J. R. Kelleher. 2D saturable absorbers for fibre lasers. Appl. Sci., 2015, 5: 1440-1456.

[24] Z. C. Luo, M. Liu, H. Liu, X. W. Zheng, A. P. Luo, C. J. Zhao, H. Zhang, S. C. Wen, W. C. Xu. 2  GHz passively harmonic mode-locked fiber laser by a microfiber-based topological insulator saturable absorber. Opt. Lett., 2013, 38: 5212-5215.

[25] Z. Q. Luo, Y. Z. Huang, J. Weng, H. H. Cheng, Z. Q. Lin, B. Xu, Z. P. Cai, H. Y. Xu. 1.06  μm Q-switched ytterbium-doped fiber laser using few-layer topological insulator Bi2Se3 as a saturable absorber. Opt. Express, 2013, 21: 29516-29522.

[26] S. L. Yu, X. Q. Wu, K. R. Chen, B. G. Chen, X. Guo, D. X. Dai, L. M. Tong, W. T. Liu, Y. R. Shen. All-optical graphene modulator based on optical Kerr phase shift. Optica, 2016, 3: 541-544.

[27] J. Mohanraj, V. Velmurugan, S. Sivabalan. Transition metal dichalcogenides based saturable absorbers for pulsed laser technology. Opt. Mater., 2016, 60: 601-617.

[28] J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, K. M. Abramski. Black phosphorus saturable absorber for ultrashort pulse generation. Appl. Phys. Lett., 2015, 107: 051108.

[29] X. M. Liu, D. D. Han, Z. P. Sun, C. Zeng, H. Lu, D. Mao, Y. D. Cui, F. Q. Wang. Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes. Sci. Rep., 2013, 3: 2718.

[30] H. Jeong, S. Y. Choi, F. Rotermund, K. Lee, D. Yeom. All-polarization maintaining passively mode-locked fiber laser using evanescent field interaction with single-walled carbon nanotube saturable absorber. J. Lightwave Technol., 2016, 34: 3510-3514.

[31] W. S. Kwon, H. Lee, J. H. Kim, J. Choi, K. Kim, S. Kim. Ultrashort stretched-pulse L-band laser using carbon-nanotube saturable absorber. Opt. Express, 2015, 23: 7779-7785.

[32] X. M. Liu, H. R. Yang, Y. D. Cui, G. W. Chen, Y. Yang, X. Q. Wu, X. K. Yao, D. D. Han, X. X. Han, C. Zeng, J. Guo, W. L. Li, G. Cheng, L. M. Tong. Graphene-clad microfibre saturable absorber for ultrafast fibre lasers. Sci. Rep., 2016, 6: 26024.

[33] H. Zhang, Q. L. Bao, D. Y. Tang, L. M. Zhao, K. P. Loh. Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker. Appl. Phys. Lett., 2009, 95: 141103.

[34] J. Xu, J. Liu, S. D. Wu, Q. H. Yang, P. Wang. Graphene oxide mode-locked femtosecond erbium-doped fiber lasers. Opt. Express, 2012, 20: 15474-15480.

[35] Q. L. Bao, K. P. Loh. Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS Nano, 2012, 6: 3677-3694.

[36] Y. H. Lin, S. F. Lin, Y. C. Chi, C. L. Wu, C. H. Cheng, W. H. Tseng, J. H. He, C. I. Wu, C. K. Lee, G. R. Lin. Using n- and p-type Bi2Te3 topological insulator nanoparticles to enable controlled femtosecond mode-locking of fiber lasers. ACS Photon., 2015, 2: 481-490.

[37] C. J. Zhao, H. Zhang, X. Qi, Y. Chen, Z. T. Wang, S. C. Wen, D. Y. Tang. Ultra-short pulse generation by a topological insulator based saturable absorber. Appl. Phys. Lett., 2012, 101: 211106.

[38] S. B. Lu, C. J. Zhao, Y. H. Zou, S. Q. Chen, Y. Chen, Y. Li, H. Zhang, S. C. Wen, D. Y. Tang. Third order nonlinear optical property of Bi2Se3. Opt. Express, 2013, 21: 2072-2082.

[39] H. Chen, Y. S. Chen, J. D. Yin, X. J. Zhang, T. Guo, P. G. Yan. High-damage-resistant tungsten disulfide saturable absorption mirror for passively Q-switched fiber laser. Opt. Express, 2016, 24: 16287-16296.

[40] P. G. Yang, H. Chen, J. D. Yin, Z. H. Xu, J. R. Li, Z. K. Jiang, W. F. Zhang, J. Z. Wang, I. L. Li, Z. P. Sun, S. C. Ruan. Large-area tungsten disulfide for ultrafast photonics. Nanoscale, 2017, 9: 1871-1877.

[41] K. Wu, X. Y. Zhang, J. Wang, X. Li, J. P. Chen. WS2 as a saturable absorber for ultrafast photonic applications of mode-locked and Q-switched lasers. Opt. Express, 2015, 23: 11453-11461.

[42] D. Mao, X. Y. She, B. B. Du, D. X. Yang, W. D. Zhang, K. Song, X. Q. Cui, B. Q. Jiang, T. Peng, J. L. Zhao. Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets. Sci. Rep., 2016, 6: 23583.

[43] X. Y. Zhang, S. F. Zhang, B. H. Chen, H. Wang, K. Wu, Y. Chen, J. T. Fan, S. Qi, X. L. Cui, L. Zhang, J. Wang. Direct synthesis of large-scale hierarchical MoS2 films nanostructured with orthogonally oriented vertically and horizontally aligned layers. Nanoscale, 2016, 8: 431-439.

[44] W. J. Liu, M. L. Liu, M. Lei, S. B. Fang, Z. Y. Wei. Titanium selenide saturable absorber mirror for passive Q-switched Er-doped fiber laser. IEEE J. Sel. Top. Quantum Electron., 2018, 24: 0901005.

[45] M. Zhang, R. C. T. Howe, R. I. Woodward, E. J. R. Kelleher, F. Torrisi, G. H. Hu, S. V. Popov, J. R. Taylor, T. Hasan. Solution processed MoS2-PVA composite for subbandgap mode-locking of a wideband tunable ultrafast Er:fiber laser. Nano Res., 2015, 8: 1522-1534.

[46] S. B. Lu, L. L. Miao, Z. N. Guo, X. Qi, C. J. Zhao, H. Zhang, S. C. Wen, D. Y. Tang, D. Y. Fan. Broadband nonlinear optical response in multi-layer black phosphorus: an emerging infrared and mid-infrared optical material. Opt. Express, 2015, 23: 11183-11194.

[47] K. Park, J. Lee, Y. T. Lee, W. K. Choi, J. H. Lee, Y. W. Song. Black phosphorus saturable absorber for ultrafast mode-locked pulse laser via evanescent field interaction. Ann. Phys. (Berlin), 2015, 527: 770-776.

[48] H. R. Mu, S. H. Lin, Z. C. Wang, S. Xiao, P. F. Li, Y. Chen, H. Zhang, H. F. Bao, S. P. Lau, C. X. Pan, D. Y. Fan, Q. L. Bao. Black phosphorus-polymer composites for pulsed lasers. Adv. Opt. Mater., 2015, 3: 1447-1453.

[49] J. F. Li, H. Y. Luo, B. Zhai, R. G. Lu, Z. N. Guo, H. Zhang, Y. Liu. Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers. Sci. Rep., 2016, 6: 30361.

[50] Z. Guo, H. Zhang, S. Lu, Z. Wang, S. Tang, J. Shao, Z. Sun, H. Xie, H. Wang, X. Yu, P. K. Chu. From black phosphorus to phosphorene: basic solvent exfoliation, evolution of Raman scattering, and applications to ultrafast photonics. Adv. Funct. Mater., 2015, 25: 6996-7002.

[51] Z. Guo, S. Chen, Z. Wang, Z. Yang, F. Liu, Y. Xu, J. Wang, Y. Yi, H. Zhang, L. Liao, P. K. Chu, X. Yu. Metal-ion-modified black phosphorus with enhanced stability and transistor performance. Adv. Mater., 2017, 29: 1703811.

[52] Y. Song, Z. Liang, X. Jiang, Y. Chen, Z. Li, L. Lu, Y. Ge, K. Wang, J. L. Zheng, S. B. Lu, J. H. Ji, H. Zhang. Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability. 2D Mater., 2017, 4: 045010.

[53] L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Ponraj, B. Dong, Y. Xiang, F. Xing, D. Fan, H. Zhang. Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability. Laser Photon. Rev., 2017, 12: 1700221.

[54] A. K. Geim, I. V. Grigorieva. Van der Waals heterostructures. Nature, 2013, 499: 419-425.

[55] Z. T. Wang, H. R. Mu, J. Yuan, C. J. Zhao, Q. L. Bao, H. Zhang. Graphene-Bi2Te3 heterostructure as broadband saturable absorber for ultra-short pulse generation in Er-doped and Yb-doped fiber lasers. IEEE J. Sel. Top. Quantum Electron., 2017, 23: 8800105.

[56] Y. J. Gong, J. H. Lin, X. L. Wang, G. Shi, S. D. Lei, Z. Lin, X. L. Zou, G. L. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Ta, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, P. M. Ajayan. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater., 2014, 13: 1135-1142.

[57] G. Zhao, J. Hou, Y. Z. Wu, J. L. He, X. P. Hao. Preparation of 2D MoS2/graphene heterostructure through a monolayer intercalation method and its application as an optical modulator in pulsed laser generation. Adv. Opt. Mater., 2015, 3: 937-942.

[58] H. R. Mu, Z. T. Wang, J. Yuan, S. Xiao, C. Y. Chen, J. C. Song, Y. S. Wang, Y. Z. Xue, H. Zhang, Q. L. Bao. Graphene/Bi2Te3 heterostructure as saturable absorber for short pulse generation. ACS Photon., 2015, 2: 832-841.

[59] Z. T. Wang, H. R. Mu, C. J. Zhao, Q. L. Bao, H. Zhang. Harmonic mode-locking and wavelength-tunable Q-switching operation in the graphene-Bi2Te3 heterostructure saturable absorber-based fiber laser. Opt. Eng., 2016, 55: 081314.

[60] Y. Q. Jiang, L. L. Miao, G. B. Jiang, Y. Chen, X. Qi, X. F. Jiang, H. Zhang, S. C. Wen. Broadband and enhanced nonlinear optical response of MoS2/graphene nanocomposites for ultrafast photonics applications. Sci. Rep., 2015, 5: 16372.

[61] LiuC.LiH. P.DengG. L.LanC. Y.LiC.LiuY., “Femtosecond Er-doped fiber laser using a graphene/MoS2 heterostructure saturable absorber,” in Asia Communications and Photonics Conference, Vol. 129 of 2016 OSA Technical Digest Series (Optical Society of America, 2016), paper AF2A.

[62] W. X. Du, H. P. Li, C. Liu, S. N. Shen, C. Y. Lan, C. Li, Y. Liu. Ultrafast pulse erbium-doped fiber laser with a graphene/WS2 heterostructure saturable absorber. Proc. SPIE, 2017, 10457: 104571M.

[63] P. V. C. Medeiros, S. Stafström, J. Björk. Effects of extrinsic and intrinsic perturbations on the electronic structure of graphene: retaining an effective primitive cell band structure by band unfolding. Phys. Rev. B, 2014, 89: 041407.

[64] P. V. C. Medeiros, S. S. Tsirkin, S. Stafström, J. Björk. Unfolding spinor wave functions and expectation values of general operators: introducing the unfolding-density operator. Phys. Rev. B, 2015, 91: 041116.

[65] G. Kresse, J. Furthmüller. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 1996, 54: 11169-11186.

[66] P. E. Blöchl. Projector augmented-wave method. Phys. Rev. B, 1994, 50: 17953-17979.

[67] G. Kresse, D. Joubert. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B, 1999, 59: 1758-1775.

[68] J. P. Perdew, K. Burke, M. Ernzerhof. Generalized gradient approximation made simple. Phys. Rev. Lett., 1996, 77: 3865-3868.

[69] S. Grimme. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem., 2006, 27: 1787-1799.

[70] T. L. Anderson, H. B. Krause. Refinement of the Sb2Te3 structures and their relationship to nonstoichiometric Sb2Te3−ySey compounds. Acta Crystallogr. Sect. B, 1974, 30: 1307-1310.

[71] S. Bruzzone, G. Fiori. Ab-initio simulations of deformation potentials and electron mobility in chemically modified graphene and two-dimensional hexagonal boron-nitride. Appl. Phys. Lett., 2011, 99: 222108.

[72] S. Takagi, A. Toriumi, M. Iwase, H. Tango. On the universality of inversion layer mobility in Si MOSFET’s: part I-effects of substrate impurity concentration. IEEE Trans. Electron Dev., 1994, 41: 2357-2362.

[73] N. Ma, D. Jena. Carrier statistics and quantum capacitance effects on mobility extraction in two-dimensional crystal semiconductor field-effect transistors. 2D Mater., 2015, 2: 015003.

Wenjun Liu, Ya-Nan Zhu, Mengli Liu, Bo Wen, Shaobo Fang, Hao Teng, Ming Lei, Li-Min Liu, Zhiyi Wei. Optical properties and applications for MoS2-Sb2Te3-MoS2 heterostructure materials[J]. Photonics Research, 2018, 6(3): 03000220.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!