中国激光, 2019, 46 (12): 1214002, 网络出版: 2019-12-02   

基于超材料的太赫兹偏振不敏感宽带吸波器

Metamaterial-Based Terahertz Polarization-Insensitive Broadband Absorber
作者单位
北京交通大学光波技术研究所全光网络与现代通信网教育部重点实验室, 北京 100044
引用该论文

郝梦真, 延凤平, 王伟, 杜雪梅, 霍红. 基于超材料的太赫兹偏振不敏感宽带吸波器[J]. 中国激光, 2019, 46(12): 1214002.

Mengzhen Hao, Fengping Yan, Wei Wang, Xuemei Du, Hong Huo. Metamaterial-Based Terahertz Polarization-Insensitive Broadband Absorber[J]. Chinese Journal of Lasers, 2019, 46(12): 1214002.

参考文献

[1] Tao H, Bingham C M, Pilon D, et al. A dual band terahertz metamaterial absorber[J]. Journal of Physics D: Applied Physics, 2010, 43(22): 225102.

[2] Kakenov N, Balci O, Takan T, et al. Observation of gate-tunable coherent perfect absorption of terahertz radiation in graphene[J]. ACS Photonics, 2016, 3(9): 1531-1535.

[3] He Y X, Wang Y Y, Xu D G, et al. High-energy and ultra-wideband tunable terahertz source with DAST crystal via difference frequency generation[J]. Applied Physics B, 2018, 124(1): 16.

[4] Joseph C S, Yaroslavsky A N, Neel V A, et al. Continuous wave terahertz transmission imaging of nonmelanoma skin cancers[J]. Lasers in Surgery and Medicine, 2011, 43(6): 457-462.

[5] Yeo WG. Terahertz spectroscopic characterization and imaging for biomedical applications[D]. USA: The Ohio State University, 2015.

[6] Hu Y, Huang P, Guo L T, et al. Terahertz spectroscopic investigations of explosives[J]. Physics Letters A, 2006, 359(6): 728-732.

[7] Jansen C, Wietzke S, Peters O, et al. Terahertz imaging: applications and perspectives[J]. Applied Optics, 2010, 49(19): E48-E57.

[8] Islam M S, Sultana J, Rifat A A, et al. Terahertz sensing in a hollow core photonic crystal fiber[J]. IEEE Sensors Journal, 2018, 18(10): 4073-4080.

[9] Llatser I, Mestres A, Abadal S, et al. Time-and frequency-domain analysis of molecular absorption in short-range terahertz communications[J]. IEEE Antennas and Wireless Propagation Letters, 2015, 14: 350-353.

[10] Chen H T, Padilla W J. Zide J M O, et al. Active terahertz metamaterial devices[J]. Nature, 2006, 444(7119): 597-600.

[11] Smith D R, Padilla W J, Vier D C, et al. Composite medium with simultaneously negative permeability and permittivity[J]. Physical Review Letters, 2000, 84(18): 4184-4187.

[12] Pendry J. Metamaterials in the sunshine[J]. Nature Materials, 2006, 5(8): 599-600.

[13] 李荣彬, 杜雪, 张志辉, 等. 光学微结构的超精密加工技术[J]. 纳米技术与精密工程, 2003, 1(1): 57-61.

    Li R B, Du X, Zhang Z H, et al. Ultra-precision machining of optical microstructures[J]. Nanotechnology and Precision Engineering, 2003, 1(1): 57-61.

[14] Lu M Z, Li W Z, Brown E R. Second-order bandpass terahertz filter achieved by multilayer complementary metamaterial structures[J]. Optics Letters, 2011, 36(7): 1071-1073.

[15] Al-Naib I. Biomedical sensing with conductively coupled terahertz metamaterial resonators[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23(4): 4700405.

[16] Liu X Y, Fan K B, Shadrivov I V, et al. Experimental realization of a terahertz all-dielectric metasurface absorber[J]. Optics Express, 2017, 25(1): 191-201.

[17] 孙慧慧, 延凤平, 谭思宇, 等. 磁导率近零太赫兹超材料设计的仿真分析[J]. 中国激光, 2018, 45(6): 0614001.

    Sun H H, Yan F P, Tan S Y, et al. Simulation analysis on design of permeability-near-zero terahertz metamaterials[J]. Chinese Journal of Lasers, 2018, 45(6): 0614001.

[18] 李广森, 延凤平, 王伟, 等. 光敏可调的多波段电磁诱导透明超材料分析[J]. 中国激光, 2019, 46(1): 0114002.

    Li G S, Yan F P, Wang W, et al. Analysis of photosensitive tunable multiband electromagnetically induced transparency metamaterials[J]. Chinese Journal of Lasers, 2019, 46(1): 0114002.

[19] Rodrigo S G, Martín-Moreno L. Molecular detection with terahertz waves based on absorption-induced transparency metamaterials[J]. Proceedings of SPIE, 2016, 9993: 99930C.

[20] Wilbert DS, Hokmabadi MP, BaughmanW, et al. Highly efficient, polarization insensitive terahertz metamaterial perfect absorber and imaging[C]//IEEE Photonics Conference 2012, September 23-27, 2012, Burlingame, CA, USA. New York: IEEE, 2012: 228- 229.

[21] Grant J, Escorcia-Carranza I, Li C, et al. A monolithic resonant terahertz sensor element comprising a metamaterial absorber and micro-bolometer[J]. Laser & Photonics Reviews, 2013, 7(6): 1043-1048.

[22] Iwaszczuk K, Strikwerda A C, Fan K B, et al. Flexible metamaterial absorbers for stealth applications at terahertz frequencies[J]. Optics Express, 2012, 20(1): 635-643.

[23] Landy N I, Sajuyigbe S, Mock J J, et al. Perfect metamaterial absorber[J]. Physical Review Letters, 2008, 100(20): 207402.

[24] 邹涛波, 胡放荣, 肖靖, 等. 基于超材料的偏振不敏感太赫兹宽带吸波体设计[J]. 物理学报, 2014, 63(17): 178103.

    Zou T B, Hu F R, Xiao J, et al. Design of a polarization-insensitive and broadband terahertz absorber using metamaterials[J]. Acta Physica Sinica, 2014, 63(17): 178103.

[25] Ye Y Q, Jin Y, He S L. Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime[J]. Journal of the Optical Society of America B, 2010, 27(3): 498-504.

[26] Hendrickson J, Guo J P, Zhang B Y, et al. Wideband perfect light absorber at midwave infrared using multiplexed metal structures[J]. Optics Letters, 2012, 37(3): 371-373.

[27] Huang L, Chowdhury D R, Ramani S, et al. Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band[J]. Optics Letters, 2012, 37(2): 154-156.

[28] Song Z Y, Wang K, Li J W, et al. Broadband tunable terahertz absorber based on vanadium dioxide metamaterials[J]. Optics Express, 2018, 26(6): 7148-7154.

[29] Engheta N. Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials[J]. Science, 2007, 317(5845): 1698-1702.

[30] Zhang Q, Bai L H, Bai Z Y, et al. Theoretical analysis and design of a near-infrared broadband absorber based on EC model[J]. Optics Express, 2015, 23(7): 8910-8917.

[31] Smith D R, Pendry J B. Homogenization of metamaterials by field averaging (invited paper)[J]. Journal of the Optical Society of America B, 2006, 23(3): 391-403.

[32] Zhou J F, Economon E N, Koschny T, et al. Unifying approach to left-handed material design[J]. Optics Letters, 2006, 31(24): 3620-3622.

郝梦真, 延凤平, 王伟, 杜雪梅, 霍红. 基于超材料的太赫兹偏振不敏感宽带吸波器[J]. 中国激光, 2019, 46(12): 1214002. Mengzhen Hao, Fengping Yan, Wei Wang, Xuemei Du, Hong Huo. Metamaterial-Based Terahertz Polarization-Insensitive Broadband Absorber[J]. Chinese Journal of Lasers, 2019, 46(12): 1214002.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!