激光与光电子学进展, 2021, 58 (7): 0735001, 网络出版: 2021-04-25  

激光辅助水中脉冲放电生成等离子体的数值模拟 下载: 1013次

Numerical Simulation of Plasma Generated by Laser-Assisted Pulsed Discharge in Water
作者单位
北京石油化工学院光机电装备技术北京市重点实验室,北京 102617
引用该论文

钱杨, 冯音琦, 黄民双, 许友文. 激光辅助水中脉冲放电生成等离子体的数值模拟[J]. 激光与光电子学进展, 2021, 58(7): 0735001.

Yang Qian, Yinqi Feng, Minshuang Huang, Youwen Xu. Numerical Simulation of Plasma Generated by Laser-Assisted Pulsed Discharge in Water[J]. Laser & Optoelectronics Progress, 2021, 58(7): 0735001.

参考文献

[1] Wüthrich R, Fascio V. Machining of non-conducting materials using electrochemical discharge phenomenon-an overview[J]. International Journal of Machine Tools and Manufacture, 2005, 45(9): 1095-1108.

[2] Lal A, Bleuler H, Wüthrich R. Fabrication of metallic nanoparticles by electrochemical discharges[J]. Electrochemistry Communications, 2008, 10(3): 488-491.

[3] Wang L, Jiang X Z. Plasma-induced reduction of chromium(VI) in an aqueous solution[J]. Environmental Science & Technology, 2008, 42(22): 8492-8497.

[4] Taghvaei H, Shirazi M M, Hooshmand N, et al. Experimental investigation of hydrogen production through heavy naphtha cracking in pulsed DBD reactor[J]. Applied Energy, 2012, 98: 3-10.

[5] Hou T F, Zhang S Y, Chen Y D, et al. Hydrogen production from ethanol reforming: catalysts and reaction mechanism[J]. Renewable and Sustainable Energy Reviews, 2015, 44: 132-148.

[6] Chanburanasiri N, Ribeiro A M, Rodrigues A E, et al. Hydrogen production via sorption enhanced steam methane reforming process using Ni/CaO multifunctional catalyst[J]. Industrial & Engineering Chemistry Research, 2011, 50(24): 13662-13671.

[7] Czylkowski D, Hrycak B, Miotk R, et al. Hydrogen production by conversion of ethanol using atmospheric pressure microwave plasmas[J]. International Journal of Hydrogen Energy, 2015, 40(40): 14039-14044.

[8] Sun B, Zhao X T, Xin Y B, et al. Large capacity hydrogen production by microwave discharge plasma in liquid fuels ethanol[J]. International Journal of Hydrogen Energy, 2017, 42(38): 24047-24054.

[9] 周素素, 王新兵, 左都罗. 脉冲激光诱导碳等离子体的特性[J]. 中国激光, 2019, 46(1): 0111001.

    Zhou S S, Wang X B, Zuo D L. Characteristics of carbon plasma induced by pulsed laser[J]. Chinese Journal of Lasers, 2019, 46(1): 0111001.

[10] 陈明华, 李陈宾, 刘黎明. 激光诱导增强电弧等离子体的放电状态研究[J]. 高电压技术, 2013, 39(7): 1661-1667.

    Chen M H, Li C B, Liu L M. Discharge state of laser induced and enhanced arc plasma[J]. High Voltage Engineering, 2013, 39(7): 1661-1667.

[11] 董博, 何小勇, 王亚蕊, 等. 火花放电辅助-激光诱导击穿光谱技术中的放电通道特性研究[J]. 光子学报, 2018, 47(8): 0847006.

    Dong B, He X Y, Wang Y R, et al. Characteristics of discharge channel in spark discharge assisted laser-induced breakdown spectroscopy[J]. Acta Photonica Sinica, 2018, 47(8): 0847006.

[12] 余建立, 李乘, 姚关心, 等. 激光诱导液相基质等离子体的空间演化特性[J]. 中国激光, 2019, 46(8): 0802001.

    Yu J L, Li C, Yao G X, et al. Spatial evolution characteristics of laser-induced plasma in liquid matrix[J]. Chinese Journal of Lasers, 2019, 46(8): 0802001.

[13] 刘洋, 陈宗胜, 时家明. 飞秒激光等离子体通道电磁波传输研究进展[J]. 激光与光电子学进展, 2019, 56(9): 090002.

    Liu Y, Chen Z S, Shi J M. Research progress on electromagnetic wave transmission via femtosecond-laser plasma channel[J]. Laser & Optoelectronics Progress, 2019, 56(9): 090002.

[14] 鲁建英, 耿德珅, 陈朗. 强激光水中诱导等离子体冲击波数值模拟[J]. 中国激光, 2015, 42(9): 0902001.

    Lu J Y, Geng D S, Chen L. Numerical simulation of high intensity of laser induced plasma shock wave in water[J]. Chinese Journal of Lasers, 2015, 42(9): 0902001.

[15] 钱杨, 冯音琦, 黄民双, 等. 水中脉冲电压放电形成等离子体通道模拟分析[J]. 真空科学与技术学报, 2019, 39(12): 1119-1129.

    Qian Y, Feng Y Q, Huang M S, et al. Formation and growth of plasma channels generated by discharge of high voltage nanosecond pulse in water: a simulation study[J]. Chinese Journal of Vacuum Science and Technology, 2019, 39(12): 1119-1129.

[16] 虞福春, 郑春开. 电动力学[M]. 2版. 北京: 北京大学出版社, 2003.

    Yu F C, Zheng C K. Electrodynamics[M]. 2nd ed. Beijing: Peking University Press, 2003.

[17] 苏杰, 孙诚, 王晓秋. 一个适用于数值计算的金属色散模型分析研究[J]. 光电子·激光, 2013, 24(2): 408-414.

    Su J, Sun C, Wang X Q. A metallic dispersion model for numerical simulation[J]. Journal of Optoelectronics·Laser, 2013, 24(2): 408-414.

[18] 李力, 吴寒, 马修泉. 电磁波在磁化等离子体中传输机理研究[J]. 航空制造技术, 2017, 60(20): 30-34.

    Li L, Wu H, Ma X Q. Research on propagation mechanism of electromagnetic wave in magnetized plasma[J]. Aeronautical Manufacturing Technology, 2017, 60(20): 30-34.

[19] 张海鸥, 王琨, 王桂兰. 激光等离子体相互作用的数值模拟[J]. 强激光与粒子束, 2007, 19(12): 2039-2042.

    Zhang H O, Wang K, Wang G L. Numerical simulation of laser plasma interaction[J]. High Power Laser and Particle Beams, 2007, 19(12): 2039-2042.

[20] 常铁强. 激光等离子体相互作用与激光聚变[M]. 长沙: 湖南科学技术出版社, 1991.

    Chang T Q. Laser plasma interaction and laser fusion[M]. Changsha: Hunan Science & Technology Press, 1991.

[21] Weibel E S. Anomalous skin effect in a plasma[J]. Physics of Fluids, 1967, 10(4): 741.

[22] Gamaliy E G, Dragila R. Interaction of ultrashort laser pulses at relativistic intensities with solid targets: relativistic skin effect[J]. Physical Review A, 1990, 42(2): 929-935.

[23] Rozmus W, Tikhonchuk V T. Skin effect and interaction of short laser pulses with dense plasmas[J]. Physical Review A, 1990, 42(12): 7401-7412.

钱杨, 冯音琦, 黄民双, 许友文. 激光辅助水中脉冲放电生成等离子体的数值模拟[J]. 激光与光电子学进展, 2021, 58(7): 0735001. Yang Qian, Yinqi Feng, Minshuang Huang, Youwen Xu. Numerical Simulation of Plasma Generated by Laser-Assisted Pulsed Discharge in Water[J]. Laser & Optoelectronics Progress, 2021, 58(7): 0735001.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!