Frontiers of Optoelectronics, 2016, 9 (4): 571–577, 网络出版: 2017-03-09  

Low dispersion broadband integrated double-slot microring resonators optical buffer

Low dispersion broadband integrated double-slot microring resonators optical buffer
作者单位
School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
引用该论文

Chuan WANG, Xiaoying LIU, Minming ZHANG, Peng ZHOU. Low dispersion broadband integrated double-slot microring resonators optical buffer[J]. Frontiers of Optoelectronics, 2016, 9(4): 571–577.

Chuan WANG, Xiaoying LIU, Minming ZHANG, Peng ZHOU. Low dispersion broadband integrated double-slot microring resonators optical buffer[J]. Frontiers of Optoelectronics, 2016, 9(4): 571–577.

参考文献

[1] Melloni A, Morichetti F. The long march of slow photonics. Nature Photonics, 2009, 3(3): 119–119

[2] Sheng X, Dong X, Zhang X, Peng C. Advances in the research on all-optical buffers. Study on Optical Communications, 2012, (6): 52–55

[3] Dutta M K, Chaubey V K. Modeling and performance analysis of optical packet switching network using .ber delay lines. In: Proceedings of India Conference. 2011, 1–4

[4] Melloni A, Canciamilla A, Ferrari C, Morichetti F, O'Faolain L, Krauss T, De La Rue R, Samarelli A, Sorel M. Tunable delay lines in silicon photonics: coupled resonators and photonic crystals, a comparison. IEEE Photonics Journal, 2010, 2(2): 181–194

[5] Xia F, Sekaric L, Vlasov Y. Ultracompact optical buffers on a silicon chip. Nature Photonics, 2007, 1(1): 65–71

[6] Morichetti F, Ferrari C, Canciamilla A, Melloni A. The .rst decade of coupled resonator optical waveguides: bringing slow light to applications. Laser & Photonics Reviews, 2012, 6(1): 74–96

[7] Bogaerts W, De Heyn P, Van Vaerenbergh T, De Vos K, Selvaraja S K, Claes T, Dumon P, Bienstman P, Van Thourhout D, Baets R. Silicon microring resonators. Laser & Photonics Reviews, 2012, 6 (1): 47–73

[8] Almeida V R, Xu Q, Barrios C A, Lipson M. Guiding and con.ning light in void nanostructure. Optics Letters, 2004, 29(11): 1209– 1211

[9] Jagerska J, Thomas N L, Houdre R, Bolten J, Moormann C, Wahlbrink T, Ctyroky J, Waldow M, F.rst M. Dispersion properties of silicon nanophotonic waveguides investigated with Fourier optics. Optics Letters, 2007, 32(18): 2723–2725

[10] Di Falco A, O’Faolain L, Krauss T F. Dispersion control and slow light in slotted photonic crystal waveguides. Applied Physics Letters, 2008, 92(8): 083501

[11] Zheng Z, Iqbal M, Liu J. Dispersion characteristics of SOI-based slot optical waveguides. Optics Communications, 2008, 281(20): 5151–5155

[12] Willner A E, Zhang L, Yue Y. Tailoring of dispersion and nonlinear properties of integrated silicon waveguides for signal processing applications. Semiconductor Science and Technology, 2011, 26(1): 014044

[13] Zhang L, Yue Y, Beausoleil R G, Willner A E. Analysis and engineering of chromatic dispersion in silicon waveguide bends and ring resonators. Optics Express, 2011, 19(9): 8102–8107

[14] Bao C, Yan Y, Zhang L, Yue Y, Willner A E. Tailoring of low chromatic dispersion over a broadband in silicon waveguides using a double-slot design. In: Proceedings of Conference on Laser and Electro-Optics. 2013, JTu4A.53-1–JTu4A.53-2

[15] Yan Y, Matsko A, Bao C, Maleki L, Willner A E. Increasing the spectral bandwidth of optical frequency comb generation in a microring resonator using dispersion tailoring slotted waveguide. In: Proceedings of IEEE Photonics Conference. 2013, 230–231

[16] Bao C, Yan Y, Zhang L, Yue Y, Ahmed N, Agarwal A M, Kimerling L C, Michel J, Willner A E. Increased bandwidth with .attened and low dispersion in a horizontal double-slot silicon waveguide. Journal of the Optical Society of America B, Optical Physics, 2015, 32(1): 26–30

[17] Sun R, Dong P, Feng N N, Hong C Y, Michel J, Lipson M, Kimerling L. Horizontal single and multiple slot waveguides: optical transmission at l = 1550 nm. Optics Express, 2007, 15(26): 17967–17972 PMID:19551093

[18] Prabhu A M, Tsay A, Han Z, Van V. Extreme miniaturization of silicon add–drop microring .lters for VLSI photonics applications. IEEE Photonics Journal, 2010, 2(3): 436–444

[19] Selvaraja S K, Jaenen P, Bogaerts W, Van Thourhout D, Dumon P, Baets R. Fabrication of photonic wire and crystal circuits in silicon-on-insulator using 193-nm optical lithography. Journal of Lightwave Technology, 2009, 27(18): 4076–4083

[20] Selvaraja S K, Bogaerts W, Dumon P, Van Thourhout D, Baets R. Subnanometer linewidth uniformity in silicon nanophotonic wave-guide devices using CMOS fabrication technology. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16(1): 316–324

[21] Selvaraja S K, De Vos K, Bogaerts W, Bienstman P, Van Thourhout D, Baets R. Effect of device density on the uniformity of silicon nano-photonic waveguide devices. In: Proceedings of IEEE LEOS Annual Meeting Conference. 2009, 311–312

[22] Xiao S, Khan M H, Shen H, Qi M. Compact silicon microring resonators with ultra-low propagation loss in the C band. Optics Express, 2007, 15(22): 14467–14475

[23] Bogaerts W, Selvaraja S K, Dumon P, Brouckaert J, De Vos K, Van Thourhout D, Baets R. Silicon-on-insulator spectral .lters fabricated with CMOS technology. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16(1): 33–44

[24] Atabaki A H, Askari M, Eftekhar A A, Adibi A. Accurate post-fabrication trimming of silicon resonators. In: Proceedings of IEEE International Conference on Group IV Photonics GFP. 2012, 42–44

[25] Boeck R, Chrostowski L, Jaeger N A. Thermally tunable quadruple Vernier racetrack resonators. Optics Letters, 2013, 38(14): 2440– 2442

[26] Shinobu F, Ishikura N, Arita Y, Tamanuki T, Baba T. Continuously tunable slow-light device consisting of heater-controlled silicon microring array. Optics Express, 2011, 19(14): 13557–13564

[27] Fontaine N K, Yang J, Pan Z, Chu S, Chen W, Little B E, Ben Yoo S J. Continuously tunable optical buffering at 40 Gb/s for optical packet switching networks. Journal of Lightwave Technology, 2008, 26(23): 3776–3783

[28] Zhu M, Liu H, Li X, Huang N, Sun Q, Wen J, Wang Z. Ultrabroadband .at dispersion tailoring of dual-slot silicon waveguides. Optics Express, 2012, 20(14): 15899–15907

[29] Subbaraman H, Ling T, Jiang Y, Chen M Y, Cao P, Chen R T. Design of a broadband highly dispersive pure silica photonic crystal .ber. Applied Optics, 2007, 46(16): 3263–3268

[30] Yoo H G, Fu Y, Riley D, Shin J H, Fauchet P M. Birefringence and optical power con.nement in horizontal multi-slot waveguides made of Si and SiO2. Optics Express, 2008, 16(12): 8623–8628

[31] Yang S H, Cooper M L, Bandaru P R, Mookherjea S. Giant birefringence in multi-slotted silicon nanophotonic waveguides. Optics Express, 2008, 16(11): 8306–8316

[32] Ding R, Baehr-Jones T, Kim W, Boyko B, Bojko R, Spott A, Pomerene A, Hill C, Reinhardt W, Hochberg M. Low-loss asymmetric strip-loaded slot waveguides in silicon-on-insulator. Applied Physics Letters, 2011, 98(23): 233303

[33] Uranus H P, Hoekstra H J W M. Modeling of loss-induced superluminal and negative group velocity in two-port ring-resonator circuits. Journal of Lightwave Technology, 2007, 25(9): 2376–2384

[34] Lou F. Theoretical study on microring resonators based all optical buffers. Dissertation for the Doctoral Degree.Wuhan: Huazhong University of Science and Technology, 2011, 21–27

Chuan WANG, Xiaoying LIU, Minming ZHANG, Peng ZHOU. Low dispersion broadband integrated double-slot microring resonators optical buffer[J]. Frontiers of Optoelectronics, 2016, 9(4): 571–577. Chuan WANG, Xiaoying LIU, Minming ZHANG, Peng ZHOU. Low dispersion broadband integrated double-slot microring resonators optical buffer[J]. Frontiers of Optoelectronics, 2016, 9(4): 571–577.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!