光学学报, 2020, 40 (11): 1101001, 网络出版: 2020-06-10   

径向偏振矢量光束在大气湍流下的传输分析 下载: 1313次

Propagation Properties of Radially-Polarized Vector Beams Under a Turbulent Atmosphere
作者单位
1 北京理工大学光电学院, 北京 100081
2 信息光子技术工业和信息化部重点实验室, 北京 100081
引用该论文

张建强, 翟焱望, 付时尧, 高春清. 径向偏振矢量光束在大气湍流下的传输分析[J]. 光学学报, 2020, 40(11): 1101001.

Jianqiang Zhang, Yanwang Zhai, Shiyao Fu, Chunqing Gao. Propagation Properties of Radially-Polarized Vector Beams Under a Turbulent Atmosphere[J]. Acta Optica Sinica, 2020, 40(11): 1101001.

参考文献

[1] Allen L, Beijersbergen M W. Spreeuw R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, 1992, 45(11): 8185-8189.

[2] Mirhosseini M. Magaña-Loaiza O S, Chen C C, et al. Rapid generation of light beams carrying orbital angular momentum[J]. Optics Express, 2013, 21(25): 30196-30203.

[3] Zhang C L, Min C J, Yuan X C. Shaping perfect optical vortex with amplitude modulated using a digital micro-mirror device[J]. Optics Communications, 2016, 381: 292-295.

[4] Fickler R, Lapkiewicz R, Plick W N, et al. Quantum entanglement of high angular momenta[J]. Science, 2012, 338(6107): 640-643.

[5] Fu S Y, Wang T L, Gao C Q. Generating perfect polarization vortices through encoding liquid-crystal display devices[J]. Applied Optics, 2016, 55(23): 6501-6505.

[6] Davis J A, Hashimoto N, Kurihara M, et al. Analysis of a segmented Q-plate tunable retarder for the generation of first-order vector beams[J]. Applied Optics, 2015, 54(32): 9583-9590.

[7] Xin J T, Lou X P, Zhou Z H, et al. Generation of polarization vortex beams by segmented quarter-wave plates[J]. Chinese Optics Letters, 2016, 14(7): 070501.

[8] Kim J W, Clarkson W A. Selective generation of Laguerre-Gaussian (LG0n) mode output in a diode-laser pumped Nd∶YAG laser[J]. Optics Communications, 2013, 296: 109-112.

[9] Zhang Y X, Yu HH, Zhang H J, et al. Self-mode-locked Laguerre-Gaussian beam with staged topological charge by thermal-optical field coupling[J]. Optics Express, 2016, 24(5): 5514-5522.

[10] Ito A, Kozawa Y, Sato S. Generation of hollow scalar and vector beams using a spot-defect mirror[J]. Journal of the Optical Society of America A, 2010, 27(9): 2072-2077.

[11] Qiao Z, Xie G Q, Wu Y H, et al. High-charge optical vortices: generating high-charge optical vortices directly from laser up to 288th order[J]. Laser & Photonics Reviews, 2018, 12(8): 1800019.

[12] Li L L, Li F. Beating the Rayleigh limit: orbital-angular-momentum-based super-resolution diffraction tomography[J]. Physical Review E, 2013, 88(3): 033205.

[13] Lin M T, Liu P G, Gao Y, et al. Super-resolution orbital angular momentum based radar targets detection[J]. Electronics Letters, 2016, 52(13): 1168-1170.

[14] Liu K, Cheng Y Q, Gao Y, et al. Super-resolution radar imaging based on experimental OAM beams[J]. Applied Physics Letters, 2017, 110(16): 164102.

[15] Willner A E, Ren Y X, Xie G D, et al. Recent advances in high-capacity free-space optical and radio-frequency communications using orbital angular momentum multiplexing[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2017, 375(2087): 20150439.

[16] Wang J. Advances in communications using optical vortices[J]. Photonics Research, 2016, 4(5): B14-B28.

[17] Yu S Y. Potentials and challenges of using orbital angular momentum communications in optical interconnects[J]. Optics Express, 2015, 23(3): 3075-3087.

[18] Shen Y J, Wang X J, Xie Z W, et al. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities[J]. Light: Science & Applications, 2019, 8: 90.

[19] Zhan Q W. Cylindrical vector beams: from mathematical concepts to applications[J]. Advances in Optics and Photonics, 2009, 1(1): 1-57.

[20] Milione G. Lavery M P J, Huang H, et al. 4×20 Gbit/s mode division multiplexing over free space using vector modes and a Q-plate mode (de) multiplexer[J]. Optics Letters, 2015, 40(9): 1980-1983.

[21] Lavery M P J, Speirits F C, Barnett S M, et al. Detection of a spinning object using light's orbital angular momentum[J]. Science, 2013, 341(6145): 537-540.

[22] Rosales-Guzmán C, Ndagano B, Forbes A. A review of complex vector light fields and their applications[J]. Journal of Optics, 2018, 20(12): 123001.

[23] Ren Y X, Huang H, Xie G D, et al. Atmospheric turbulence effects on the performance of a free space optical link employing orbital angular momentum multiplexing[J]. Optics Letters, 2013, 38(20): 4062.

[24] Fu S Y, Gao C Q. Influences of atmospheric turbulence effects on the orbital angular momentum spectra of vortex beams[J]. Photonics Research, 2016, 4(5): B1-B4.

[25] Cheng W, Haus J W, Zhan Q W. Propagation of vector vortex beams through a turbulent atmosphere[J]. Optics Express, 2009, 17(20): 17829-17836.

[26] Birch P, Ituen I, Young R, et al. Long-distance Bessel beam propagation through Kolmogorov turbulence[J]. Journal of the Optical Society of America A, 2015, 32(11): 2066-2073.

[27] Andrews LC, Philips RL, Hopen CY. Laser beam scintillation with applications[M]. Bellingham, Washington D.C., USA: SPIE Press, 2001: PM99.

[28] 张凯宁, 刘永欣, 蒲继雄. 涡旋光束在海洋湍流中传输的闪烁因子[J]. 中国激光, 2019, 46(7): 0705001.

    Zhang K N, Liu Y X, Pu J X. Scintillation index of vortex beams propagating in oceanic turbulence[J]. Chinese Journal of Lasers, 2019, 46(7): 0705001.

[29] 付时尧. 涡旋光束的生成、探测及畸变补偿技术研究[D]. 北京:北京理工大学, 2018: 96- 100.

    Fu SY. Study on the generation, detection and distortion compensation of optical vortices[D]. Beijing: Beijing Institute of Technology, 2018: 96- 100.

张建强, 翟焱望, 付时尧, 高春清. 径向偏振矢量光束在大气湍流下的传输分析[J]. 光学学报, 2020, 40(11): 1101001. Jianqiang Zhang, Yanwang Zhai, Shiyao Fu, Chunqing Gao. Propagation Properties of Radially-Polarized Vector Beams Under a Turbulent Atmosphere[J]. Acta Optica Sinica, 2020, 40(11): 1101001.

本文已被 12 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!