红外与激光工程, 2019, 48 (6): 0603005, 网络出版: 2019-07-29   

计算光学成像在散射中的应用

Application of computational optical imaging in scattering
作者单位
1 中国科学院上海光学精密机械研究所, 上海 201800
2 中国科学院大学 材料与光电研究中心, 北京 100049
引用该论文

郑珊珊, 杨婉琴, 司徒国海. 计算光学成像在散射中的应用[J]. 红外与激光工程, 2019, 48(6): 0603005.

Zheng Shanshan, Yang Wanqin, Situ Guohai. Application of computational optical imaging in scattering[J]. Infrared and Laser Engineering, 2019, 48(6): 0603005.

参考文献

[1] Wang L, Ho P P, Liu C, et al. Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr Gate[J]. Science, 1991, 253(5021): 769-771.

[2] Anderson G E, Liu F, Alfano R R. Microscope imaging through highly scattering media[J]. Optics Letters, 1994, 19(13): 981-983.

[3] Kang S, Jeong S, Choi W, et al. Imaging deep within a scattering medium using collective accumulation of single- scattered waves[J]. Nature Photonics, 2015, 9(4): 253-258.

[4] Guan J, Cheng Y, Chang G. Time-domain polarization difference imaging of objects in turbid water[J]. Optics Communication, 2017, 391: 82-87.

[5] Berrocal E, Kristensson E, Richter M, et al. Application of structured illumination for multiple scattering suppression in planar laser imaging of dense sprays[J]. Optics Express, 2008, 16(22): 17870-17881.

[6] Sudarsanam S, Mathew J, Panigrahi S, et al. Real-time imaging through strongly scattering media: seeing through turbid media, instantly[J]. Scientific Reports, 2016, 6: 25033.

[7] Huang D, Swanson E A, Lin C P, et al. Optical coherence tomography[J]. Science, 1991, 254(5035): 1178-1181.

[8] Denk W, Strickler J H, Webb W W. Two-photon laser scanning fluorescence microscopy[J]. Science, 1990, 248(4951): 73-76.

[9] Helmchen F, Denk W. Deep tissue two- photon microscopy[J]. Nature Methods, 2005, 2(12): 932-940.

[10] Webb R H. Confocal optical microscopy [J]. Reports on Progress in Physics, 1996, 59: 427-471.

[11] Chen B C, Legant W R, Wang K, et al. Lattice light-sheet microscopy: imaging molecules to embryos at high spatio temporal resolution[J]. Science, 2014, 346(6208): 1257998.

[12] Vellekoop I M, Mosk A P. Focusing coherent light through opaque strongly scattering media[J]. Optics Letters, 2007, 32(16): 2309-2311.

[13] Yaqoob Z, Psaltis D, Feld M S, et al. Optical phase conjugation for turbidity suppression in biological samples[J]. Nature Photonics, 2008, 2: 110-115.

[14] Farrell T J, Patterson M S, Wilson B. A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties invivo[J]. Medical Physics, 1992, 19: 879-888.

[15] Wang L, Jacques S L, Zheng L. MCML-Monte Carlo modeling of light transport in multi-layered tissues[J]. Computer Methods & Programs in Biomedicine, 1995, 47: 131-146.

[16] Popoff S, Lerosey G, Carminati R, et al. Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media[J]. Physical Review Letters, 2010, 104(10): 100601.

[17] Beenakker C W J. Random-matrix theory of quantum transport[J]. Reviews of Modern Physics, 1997, 69: 731.

[18] Mosk A P, Lagendijk A, Lerosey G, et al. Controlling waves in space and time for imaging and focusing in complex media[J]. Nature Photonics, 2012, 6(5): 283-292.

[19]

    Horstmeyer R, Ruan H, Yang C. Guidestar-assisted wavefront shaping methods for focusing light into biological tissue[J]. Nature Photonics, 2015, 9(9): 563-571.

[20] Vellekoop I M. Feedback-based wavefront shaping[J]. Optics Express, 2015, 23(9): 12189-12206.

[21] Yu H, Park J, Lee K, et al. Recent advances in wavefront shaping techniques for biomedical applications[J]. Current Applied Physics, 2015, 15(5): 632-641.

[22] Rotter S, Gigan S. Light fields in complex media: Mesoscopic scattering meets wave control[J]. Reviews of Modern Physics, 2017, 89(1): 015005.

[23] Conkey D B, Caravaca-Aguirre A M, Piestun R. High-speed scattering medium characterization with application to focusing light through turbid media[J]. Optics Express, 2012, 20(2): 1733-1740.

[24] Cui M. A high speed wavefront determination method based on spatial frequency modulations for focusing light through random scattering media[J]. Optics Express, 2011,19(4): 2989-2995.

[25] Cui M, Yang C. Implementation of a digital optical phase conjugation system and its application to study the robustness of turbidity suppression by phase conjugation[J]. Optics Express, 2010, 18(4): 3444-3455.

[26] Hsieh C L, Pu Y, Grange R, et al. Digital phase conjugation of second harmonic radiation emitted by nanoparticles in turbid media[J]. Optics Express, 2010, 18(12): 12283-12290.

[27] Xu X, Liu H, Wang L V. Time-reversed ultrasonically encoded optical focusing into scattering media[J]. Nature Photonics, 2011, 5(3): 154-157.

[28] Wang Y M, Judkewitz B, Dimarzio C A, et al. Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light[J]. Nature Communications, 2012, 3: 928.

[29] Si K, Fiolka R, Cui M. Fluorescence imaging beyond the ballistic regime by ultrasound pulse guided digital phase conjugation[J]. Nature Photonics, 2012, 6(10): 657-661.

[30] Ci 觩már T, Dholakia K. Exploiting multimode waveguides for pure fibre-based imaging[J]. Nature Communications, 2012, 3: 1027.

[31] Papadopoulos I N, Farahi S, Moser C, et al. Focusing and scanning light through a multimode optical fiber using digital phase conjugation[J]. Optics Express, 2012, 20(10): 10583-10590.

[32] Papadopoulos I N, Farahi S, Moser C, et al. High-resolution, lensless endoscope based on digital scanning through a multimode optical fiber[J]. Biomedical Optics Express, 2013, 4(2): 260.

[33] Ci 觩már T, Mazilu M, Dholakia K. In situ wavefront correction and its application to micromanipulation[J]. Nature Photonics, 2010, 4(6): 388-394.

[34] Van Putten E G, Akbulut D, Bertolotti J, et al. Scattering lens resolves sub-100 nm structures with visible light[J]. Physical Review Letters, 2011, 106(19):193905.

[35] Park J H, Park C, Yu H S, et al. Subwavelength light focusing using random nanoparticles[J]. Nature Photonics, 2013, 7(6): 454-458.

[36] Park C, Park J H, Rodriguez C, et al. Full-field subwavelength imaging using a scattering superlens[J]. Physical Review Letters, 2014, 113(11): 113901.

[37] Van Putten E G, Lagendijk A, Mosk A P. Nonimaging speckle interferometry for high-speed nanometer-scale position detection[J]. Optics Letters, 2012, 37(6): 1070-1072.

[38] Horstmeyer R, Judkewitz B, Vellekoop I M, et al. Physical key-protected one- time pad[J]. Scientific Reports, 2013, 3: 3543.

[39] Goorden S A, Horstmann M, Mosk A P, et al. Quantum-secure authentication of a physical unclonable key[J]. Optica, 2014, 1(6): 421-424.

[40] Akbulut D, Huisman T J, Van Putten E G, et al. Focusing light through random photonic media by binary amplitude modulation[J]. Optics Express, 2011, 19(5): 4017-4029.

[41] Vellekoop I M, Mosk A P. Universal optimal transmission of light through disordered materials[J]. Physical Review Letters, 2008, 101(12): 120601.

[42] Vellekoop I M, Putten E G V, Lagendijk A, et al. Demixing light paths inside disordered metamaterials[J]. Optics Express, 2008, 16(1): 67-80.

[43] Vellekoop I M, Aegerter C M. Scattered light fluorescence microscopy: imaging through turbid layers[J]. Optics Letters, 2010, 35(8): 1245-1247.

[44] Kong F, Silverman R H, Liu L, et al. Photoacoustic-guided convergence of light through optically diffusive media[J]. Optics Letters, 2011, 36(11): 2053-2055.

[45] Caravaca-Aguirre A M, Conkey D B, Dove J D, et al. High contrast three- dimensional photoacoustic imaging through scattering media by localized optical fluence enhancement[J]. Optics Express, 2013, 21(22): 26671-26676.

[46] Lai P, Wang L, Tay J W, et al. Photoacoustically guided wavefront shaping for enhanced optical focusing in scattering media[J]. Nature Photonics, 2015, 9(2): 126-132.

[47] Bossy E, Gigan S. Photoacoustics with coherent light[J]. Photoacoustics, 2016, 4(1): 22-35.

[48] Yu Zhipeng, Li Huanhao, Lai Puxiang. Wavefront shaping and its application to enhance photoacoustic imaging[J]. Applied Science, 2017, 7(12): 1320.

[49] Tay J W, Lai P, Suzuki Y, et al. Ultrasonically encoded wavefront shaping for focusing into random media[J]. Scientific Reports, 2014, 4: 3918.

[50] Katz O, Small E, Bromberg Y, et al. Focusing and compression of ultrashort pulses through scattering media[J]. Nature Photonics, 2011, 5(6): 372-377.

[51] Katz O, Small E, Guan Y, et al. Noninvasive nonlinear focusing and imaging through strongly scattering turbid layers[J]. Optica, 2014, 1(3): 170-174.

[52] Fiolka R, Si K, Cui M. Complex wavefront corrections for deep tissue focusing using low coherence backscattered light[J]. Optics Express, 2012, 20(15): 16532.

[53] Jang J, Lim J, Yu H, et al. Complex wavefront shaping for optimal depth-selective focusing in optical coherence tomography[J]. Optics Express, 2013, 21(3): 2890-2902.

[54] Popoff S, Lerosey G, Fink M, et al. Image transmission through an opaque material[J]. Nature Communications, 2009, 1(6): 81.

[55] Cui M. Parallel wavefront optimization method for focusing light through random scattering media[J]. Optics Letters, 2011, 36(6): 870.

[56] Popoff S M, Lerosey G, Carminati R, et al. Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media[J]. Physical Review Letters, 2010, 104(10):100601.

[57] Yu H, Hillman T R, Choi W, et al. Measuring large optical transmission matrices of disordered media[J]. Physical Review Letters, 2013, 111(15): 153902.

[58] Yoon J, Lee K R, Park J, et al. Measuring optical transmission matrices by wavefront shaping[J]. Optics Express, 2015, 23(8): 10158.

[59] Lee K R, Park Y K. Exploiting the speckle-correlation scattering matrix for a compact reference-free holographic image sensor[J]. Nature Communications, 2016, 7: 13359.

[60] Yoonseok B, Kyeoreh L, Yongkeun P. High-resolution holographic microscopy exploiting speckle-correlation scattering matrix[J]. Physical Review Applied, 2018, 10(2): 024053.

[61] Chaigne T, Katz O, Boccara A C, et al. Controlling light in scattering media non-invasively using the photoacoustic transmission matrix[J]. Nature Photonics, 2013, 8(1): 58-64.

[62] Jeong S, Lee Y R, Kang S, et al. Focusing of light energy inside a scattering medium by controlling the time-gated multiple light scattering[J]. Nature Photonics, 2018, 12: 277-283.

[63] Leith E N, Upatnieks J. Holographic imagery through diffusing media[J]. Journal of the Optical Society of America, 1966, 56(4): 523.

[64] Shen Y, Liu Y, Ma C, et al. Focusing light through biological tissue and tissue-mimicking phantoms up to 9.6cm in thickness with digital optical phase conjugation[J]. Journal of Biomedical Optics, 2016, 21(8): 085001.

[65] Vellekoop I M, Cui M, Yang C. Digital optical phase conjugation of fluorescence in turbid tissue[J]. Applied Physics Letters, 2012, 101(8): 81108.

[66] Hsieh C L, Pu Y, Grange R, et al. Imaging through turbid layers by scanning the phase conjugated second harmonic radiation from a nanoparticle[J]. Optics Express, 2010, 18: 20723-20731.

[67] Ma C, Xu X, Wang L V. Analog time-reversed ultrasonically encoded light focusing inside scattering media with a 33,000× optical power gain[J]. Scientific Reports, 2015, 5: 8896.

[68] Zhou E H, Ruan H, Yang C, et al. Focusing on moving targets through scattering samples[J]. Optica, 2014, 1(4): 227-232.

[69] Ma C, Xu X, Liu Y, et al. Time-reversed adapted-perturbation (TRAP) optical focusing onto dynamic objects inside scattering media[J]. Nature Photonics, 2014, 8(12): 931-936.

[70] Ruan H, Tom H, Yan L, et al. Focusing light inside scattering media with magnetic-particle-guided wavefront shaping[J]. Optica, 2017, 4(11): 1337-1343.

[71] Ruan H, Brake J, Robinson J E, et al. Deep tissue optical focusing and optogenetic modulation with time- reversed ultrasonically encoded light[J]. Science Advances, 2017, 3(12): 5520.

[72] Vellekoop I M, Mosk A P. Phase control algorithms for focusing light through turbid media[J]. Optics Communications, 2008, 281(11): 3071-3080.

[73] Yu H S, Lee K R, Park Y K. Ultrahigh enhancement of light focusing through disordered media controlled by megapixel modes[J]. Optics Express, 2017, 25(7): 8036-8047.

[74] Yan L, Cheng M, Yuecheng S, et al. Focusing light inside dynamic scattering media with millisecond digital optical phase conjugation[J]. Optica, 2017, 4(2): 280.

[75] Wang D, Zhou E H, Brake J, et al. Focusing through dynamic tissue with millisecond digital optical phase conjugation[J]. Optica, 2015, 2(8): 728.

[76] Park J H, Yu Z, Lee Kyeo Re, et al, Perspective: Wavefront shaping techniques for controlling multiple light scattering in biological tissues: Toward in vivo applications[J]. APL Photonics, 2018, 3: 100901.

[77] Judkewitz B, Wang Y M, Horstmeyer R, et al. Speckle-scale focusing in the diffusive regime with time reversal of variance-encoded light (TROVE)[J]. Nature Photonics, 2013, 7(4): 300-305.

[78] Yu Z, Huangfu J, Zhao F, et al. Time-reversed magnetically controlled perturbation (TRMCP) optical focusing inside scattering media[J]. Scientific Reports, 2018, 8(1): 2927.

[79] Jang M, Ruan H, Zhou H, et al. Method for auto-alignment of digital optical phase conjugation systems based on digital propagation[J]. Optics Express, 2014, 22(12): 14054.

[80] Rigden J D, Gordon E I. The granularity of scattered optical maser light[J]. SPIE Milestone Series Ms, 1997, 133: 213.

[81] Oliver B M. Sparking spots and random diffraction[J]. Proceedings of the IEEE, 1963, 51(1): 220-221.

[82] Goodman J W. Some fundamental properties of speckle[J]. Journal of the Optical Society of America, 1976, 66(11): 1145-1149.

[83] Lim J S, Nawab H. Techniques for speckle noise removal[J]. Optical Engineering, 1981, 20(3): 472-480.

[84] Edrei E, Scarcelli G. Optical imaging through dynamic turbid media using the Fourier-domain shower-curtain effect[J]. Optica, 2016, 3(1): 71-74.

[85] Bertolotti J. Non-invasive imaging through opaque scattering layers[J]. Nature, 2012, 491: 232-234.

[86] Tang W, Yang J, Yi W, et al. Single-shot coherent power-spectrum imaging of objects hidden by opaque scattering media[J]. Applied Optics, 2019, 58(4): 1033-1039.

[87] Vinu R V, Gaur C, Khare K, et al. Sparsity assisted approach for imaging from laser speckle[C]//Quantitative Phase Imaging III. International Society for Optics and Photonics, 2017, 10074: 1007409.

[88] Dror I, Sandrov A, Kopeika N S. Experimental investigation of the influence of the relative position of the scattering layer on image quality: the shower curtain effect[J]. Applied Optics, 1998, 37(27): 6495-6499.

[89] Li G, Yang W, Li D, et al. Cyphertext-only attack on the double random-phase encryption: Experimental demonstration[J]. Optics Express, 2017, 25(8): 8690-8697.

[90] Feng S, Kane C, Lee P A. Correlations and fluctuations of coherent wave transmission through disordered media[J]. Physical Review Letters, 1988, 61(7): 834-837.

[91] Freund I, Rosenbluh M, Feng S. Memory effects in propagation of optical waves through disordered media[J]. Physical Review Letters, 1988, 61(20): 2328-2331.

[92] Katz O, Heidmann P, Fink M, et al. Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations[J]. Nature Photonics, 2014, 8: 784-790.

[93] Fienup J R. Reconstruction of an object from the modulus of its Fourier transform[J]. Optics Letters, 1978, 3: 27-29.

[94] Fienup J R. Phase retrieval algorithms: a comparison[J]. Applied Optics, 1982, 21: 2758-2769.

[95] Wu T, Katz O, Shao X. Single-shot diffraction-limited imaging through scattering layers via bispectrum analysis[J]. Optics Letters, 2016, 41: 5003-5006.

[96] Singh A K, Pedrini G, Takedas M, et al. Scatter-plate microscope for lensless microscopy with diffraction limited resolution[J]. Scientific Reports, 2017, 7: 10687.

[97] Edrei E, Scarcelli G. Memory-effect based deconvolution microscopy for super-resolution imaging through scattering media[J]. Scientific Reports, 2016, 6: 33558.

[98] Yang W, Li G, Situ G. Imaging through scattering media with the auxiliary of a known reference object[J]. Scientific Reports, 2018, 8: 9614.

[99] Mukherjee S, Vijayakumar A, Kumar M, et al. 3D imaging through scatterers with interferenceless optical system[J]. Scientific Reports, 2018, 8: 1134.

[100] Shi Y, Liu Y, Wang J, et al. Non-invasive depth-resolved imaging through scattering layers via speckle correlations and parallax[J]. Applied Physics Letters, 2017, 110: 231101.

[101] Tang D, Sahoo S K, Tran V, et al. Single-shot large field of view imaging with scattering media by spatial demultiplexing[J]. Applied Optics, 2018, 57(26): 7533-7538.

[102] Li G, Yang W, Wang H, et al. Image transmission through scattering media using ptychographic iterative engine[J]. Applied Sciences, 2019, 9(5): 849.

[103] Ando T, Horisaki R, Tanida J. Speckle-learning-based object recognition through scattering media[J]. Optics Express, 2015, 23(26): 33902-33910.

[104] Horisaki R, Takagi R, Tanida J. Learning-based imaging through scattering media[J]. Optics Express, 2016, 24(13): 13738-13743.

[105] HorniK K, Stinchcombe M, White H. Multilayer feedforward networks are universal approximators[J]. Neural Networks, 1989, 2(5): 359-366.

[106] Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation[C]//International Conference on Medical Image Computing and Computerassisted Intervention, 2015: 234-241.

[107] Lyu M, Wang H, Li G, et al. Learning-base lensless imaging through optically thick scattering media[J]. Advanced Photonics, 2019, 1(3): 036002.

[108] Li S, Deng M, Lee J, et al. Imaging through glass diffusers using densely connected convolutional networks[J]. Optica, 2018, 5(7): 803-813.

[109] Li Y, Xue Y, Tian L. Deep speckle correlation: a deep learning approach toward scalable imaging through scattering media[J]. Optica, 2018, 5(10): 1181-1190.

[110] Caramazza P, Boccolini A, Buschek D, et al. Neural network identifcation of people hidden from view with a single-pixel, single-photon detector[J]. Scientific Reports, 2018, 8: 11945.

[111] Turpin A, Vishniakou I, Seelig J D. Light scattering control in transmission and reflection with neural networks[J]. Optics Express, 2018, 26(23): 30911-30929.

郑珊珊, 杨婉琴, 司徒国海. 计算光学成像在散射中的应用[J]. 红外与激光工程, 2019, 48(6): 0603005. Zheng Shanshan, Yang Wanqin, Situ Guohai. Application of computational optical imaging in scattering[J]. Infrared and Laser Engineering, 2019, 48(6): 0603005.

本文已被 7 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!