发光学报, 2020, 41 (10): 1175, 网络出版: 2020-12-30   

柔性钙钛矿太阳能电池中电极材料和电荷传输材料的研究进展

Research Progress on Electrode Materials and Charge Transport Materials in Flexible Perovskite Solar Cells
作者单位
1 河北工业大学 材料科学与工程学院, 天津 300130
2 Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, Mississippi, MS 39217, USA
3 吉林大学电子科学与工程学院 集成光电子学国家重点联合实验室, 吉林 长春 130012
引用该论文

杨立群, 马晓辉, 郑士建, 陈聪, 戴其林, 宋宏伟. 柔性钙钛矿太阳能电池中电极材料和电荷传输材料的研究进展[J]. 发光学报, 2020, 41(10): 1175.

YANG Li-qun, MA Xiao-hui, ZHENG Shi-jian, CHEN Cong, DAI Qi-lin, SONG Hong-wei. Research Progress on Electrode Materials and Charge Transport Materials in Flexible Perovskite Solar Cells[J]. Chinese Journal of Luminescence, 2020, 41(10): 1175.

参考文献

[1] HEO J H,IM S H,NOH J H,et al.. Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors [J]. Nat. Photonics, 2013,7(6):486-491.

[2] GRAETZEL M,JANSSEN R A J,MITZI D B,et al.. Materials interface engineering for solution-processed photovoltaics [J]. Nature, 2012,488(7411):304-312.

[3] KOJIMA A,TESHIMA K,SHIRAI Y,et al.. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells [J]. J. Am. Chem. Soc., 2009,131(17):6050-6051.

[4] KUMAR M H,YANTARA N,DHARANI S,et al.. Flexible,low-temperature,solution processed ZnO-based perovskite solid state solar cells [J]. Chem. Commun., 2013,49(94):11089-11091.

[5] RU P B,BI E B,ZHANG Y,et al.. High electron affinity enables fast hole extraction for efficient flexible inverted perovskite solar cells [J]. Adv. Energy Mater., 2020,10(12):1903487.

[6] ZHAO Z Q,YOU S,HUANG J,et al.. Molecular modulator for stable inverted planar perovskite solar cells with efficiency enhanced by interface engineering [J]. J. Mater. Chem. C, 2019,7(31):9735-9742.

[7] KIM B J,KIM D H,LEE Y Y,et al.. Highly efficient and bending durable perovskite solar cells:toward a wearable power source [J]. Energy Environ. Sci., 2015,8(3):916-921.

[8] PARK M,KIM H J,JEONG I,et al.. Mechanically recoverable and highly efficient perovskite solar cells:investigation of intrinsic flexibility of organic-inorganic perovskite [J]. Adv. Energy Mater., 2015,5(22):1501406.

[9] PARK S H,LEE S M,KO E H,et al.. Roll-to-roll sputtered ITO/Cu/ITO multilayer electrode for flexible,transparent thin film heaters and electrochromic applications [J]. Sci. Rep., 2016,6:33868-1-12.

[10] LEWIS J S,WEAVER M S. Thin-film permeation-barrier technology for flexible organic light-emitting devices [J]. IEEE J. Sel. Top. Quantum Electron., 2004,10(1):45-57.

[11] LIM J W,WANG H,CHOI C H,et al.. Polyethylenimine ethoxylated interlayer-mediated ZnO interfacial engineering for high-performance and low-temperature processed flexible perovskite solar cells:a simple and viable route for one-step processed CH3NH3PbI3 [J]. J. Power Sources, 2019,438:226956.

[12] MENG X C,CAI Z R,ZHANG Y Y,et al.. Bio-inspired vertebral design for scalable and flexible perovskite solar cells [J]. Nat. Commun., 2020,11(1):3016-1-10.

[13] ZHOU H P,CHEN Q,LI G,et al.. Interface engineering of highly efficient perovskite solar cells [J]. Science, 2014,345(6196):542-546.

[14] KIM H S,IM S H,PARK N G. Organolead halide perovskite:new horizons in solar cell research [J]. J. Phys. Chem. C, 2014,118(11):5615-5625.

[15] 杨旭东,陈汉,毕恩兵,等. 高效率钙钛矿太阳电池发展中的关键问题 [J]. 物理学报, 2015,64(3):038404-1-10.

    YANG X D,CHEN H,BI E B,et al.. Key issues in highly efficient perovskite solar cells [J]. Acta Phys. Sinica, 2015,64(3):038404-1-10. (in Chinese)

[16] FUAD A,FIBRIYANTI A A,MUFTI N,et al.. Growth of CH3NH3PbI3 perovskite on stainless steel substrate layered by ZnO nanoparticles using one-step spin coating route [J]. J. Phys. Conf. Ser., 2018,1011:012011-1-5.

[17] ZARDETTO V,BROWN T M,REALE A,et al.. Substrates for flexible electronics:a practical investigation on the electrical,film flexibility,optical,temperature,and solvent resistance properties [J]. Polym. Phys., 2011,49(9):638-648.

[18] JUNG H S,HAN G S,PARK N G,et al.. Flexible perovskite solar cells [J]. Joule, 2019,3(8):1850-1880.

[19] YE T,LIM S L,LI X Q,et al.. Pinhole-free mixed perovskite film for bending durable mixed perovskite solar cells [J]. Solar Energy Mater. Solar Cells, 2018,175:111-117.

[20] NOVOSELOV K S,GEIM A K,MOROZOV S V,et al.. Electric field effect in atomically thin carbon films [J]. Science, 2004,306(5696):666-669.

[21] CHEN J H,JANG C,XIAO S D,et al.. Intrinsic and extrinsic performance limits of graphene devices on SiO2 [J]. Nat. Nanotechnol., 2008,3(4):206-209.

[22] KIM S,SHIN S H,CHOI S H. N-i-p-type perovskite solar cells employing n-type graphene transparent conductive electrodes [J]. J. Alloys Compd., 2019,786:614-620.

[23] SHIN D H,KIM J M,SHIN S H,et al.. Highly-flexible graphene transparent conductive electrode/perovskite solar cells with graphene quantum dots-doped PCBM electron transport layer [J]. Dyes Pigm., 2019,170:107630.

[24] IIJIMA S. Helical microtubules of graphitic carbon [J]. Nature, 1991,354(6348):56-58.

[25] YU L P,SHEARER C,SHAPTER J. Recent development of carbon nanotube transparent conductive films [J]. Chem. Rev., 2016,116(22):13413-13453.

[26] SHAO Y C,YUAN Y B,HUANG J S. Correlation of energy disorder and open-circuit voltage in hybrid perovskite solar cells [J]. Nat. Energy, 2016,1(1):15001-1-9.

[27] WANG X Y,LI Z,XU W J,et al.. TiO2 nanotube arrays based flexible perovskite solar cells with transparent carbon nanotube electrode [J]. Nano Energy, 2015,11:728-735.

[28] HU L B,KIM H S,LEE J Y,et al.. Scalable coating and properties of transparent,flexible,silver nanowire electrodes [J]. ACS Nano, 2010,4(5):2955-2963.

[29] LEE E,AHN J,KWON H C,et al.. All-solution-processed silver nanowire window electrode-based flexible perovskite solar cells enabled with amorphous metal oxide protection [J]. Adv. Energy Mater., 2018,8(9):1702182-1-11.

[30] KANG S,JEONG J,CHO S,et al.. Ultrathin,lightweight and flexible perovskite solar cells with an excellent power-per-weight performance [J]. J. Mater. Chem. A, 2019,7(3):1107-1114.

[31] XIE M L,WANG J,KANG J C,et al.. Super-flexible perovskite solar cells with high power-per-weight on 17 μm thick PET substrate utilizing printed Ag nanowires bottom and top electrodes [J]. Flexible Printed Electron., 2019,4(3):034002.

[32] DI GIACOMO F,FAKHARUDDIN A,JOSE R,et al.. Progress,challenges and perspectives in flexible perovskite solar cells [J]. Energy Environ. Sci., 2016,9(10):3007-3035.

[33] TROUGHTON J,BRYANT D,WOJCIECHOWSKI K,et al.. Highly efficient,flexible,indium-free perovskite solar cells employing metallic substrates [J]. J. Mater. Chem. A, 2015,3(17):9141-9145.

[34] NEJAND B A,NAZARI P,GHARIBZADEH S,et al.. All-inorganic large-area low-cost and durable flexible perovskite solar cells using copper foil as a substrate [J]. Chem. Commun., 2017,53(4):747-750.

[35] TAVAKOLI M M,TSUI K H,ZHANG Q P,et al.. Highly efficient flexible perovskite solar cells with antireflection and self-cleaning nanostructures [J]. ACS Nano, 2015,9(10):10287-10295.

[36] ZHU K P,LU Z,CONG S,et al.. Ultraflexible and lightweight bamboo-derived transparent electrodes for perovskite solar cells [J]. Small, 2019,15(33):1902878.

[37] SUN Q,CHEN J D,ZHENG J W,et al.. Surface plasmon-assisted transparent conductive electrode for flexible perovskite solar cells [J]. Adv. Opt. Mater., 2019,7(20):1900847.

[38] KIEE M,KO,Y,MIN B K,et al.. Silver nanowire top electrodes in flexible perovskite solar cells using titanium metal as substrate [J]. ChemSusChem, 2016,9:31-35

[39] PISONI S,FU F,FEURER T,et al.. Flexible NIR-transparent perovskite solar cells for all-thin-film tandem photovoltaic devices [J]. J. Mater. Chem. A, 2017,5(26):13639-13647.

[40] LI L B,ZHANG S S,YANG Z C,et al.. Recent advances of flexible perovskite solar cells [J]. J. Energy Chem., 2018,27(3):673-689.

[41] HAGFELDT A,BOSCHLOO G,SUN L C,et al.. Dye-sensitized solar cells [J]. Chem. Rev., 2010,110(11):6595-6663.

[42] DI GIACOMO F,ZARDETTO V,D'EPIFANIO A,et al.. Flexible perovskite photovoltaic modules and solar cells based on atomic layer deposited compact layers and UV-irradiated TiO2 scaffolds on plastic substrates [J]. Adv. Energy Mater., 2015,5(8):1401808-1-9.

[43] CHEN C,CHENG Y,DAI Q L,et al.. Radio frequency magnetron sputtering deposition of TiO2 thin films and their perovskite solar cell applications [J]. Sci. Rep., 2015,5:17684-1-12.

[44] QIU W M,PAETZOLD U W,GEHLHAAR R,et al.. An electron beam evaporated TiO2 layer for high efficiency planar perovskite solar cells on flexible polyethylene terephthalate substrates [J]. J. Mater. Chem. A, 2015,3(45):22824-22829.

[45] CHEN C,LIU D L,WU Y J,et al.. Dual interfacial modifications by conjugated small-molecules and lanthanides doping for full functional perovskite solar cells [J]. Nano Energy, 2018,53:849-862.

[46] ZHANG B X,SONG Z L,JIN J J,et al.. Efficient rare earth co-doped TiO2 electron transport layer for high-performance perovskite solar cells [J]. J. Colloid Interface Sci., 2019,553:14-21.

[47] TSENG Z L,CHEN L C. Low-temperature ZnO films as electron transporting layers for perovskite-based solar cells [C]. Proceedings of The 2018 7th International Symposium on Next Generation Electronics,Taipei,China, 2018:369-372.

[48] CHU W J,YANG J Y,JIANG Q H,et al.. Enhancement of photovoltaic performance of flexible perovskite solar cells by means of ionic liquid interface modification in a low temperature all solution process [J]. Appl. Surf. Sci., 2018,440:1116-1122.

[49] 朱立华,商雪妮,雷凯翔,等. 应用于钙钛矿太阳能电池中金属氧化物电子传输材料的研究进展 [J]. 发光学报, 2020,41(5):481-497.

    ZHU L H,SHANG X N,LEI K X,et al.. Research progress of metal oxide electron transporting materials applied in perovskite solar cells [J]. Chin. J. Lumin., 2020,41(5):481-497. (in Chinese)

[50] WANG M H,FENG Y L,DONG Q S,et al.. Degradation mechanism of flexible perovskite solar cells:investigated by tracking of the heterojunction property [J]. Mater. Res. Bull., 2020,123:110696.

[51] PANG A Y,LI J L,WEI X F,et al.. UV-O3 treated annealing-free cerium oxide as electron transport layers in flexible planar perovskite solar cells [J]. Nanoscale Adv., 2020,doi:10.1039/D0NA00367K.

[52] SONG Z l,BI W b,ZHUANG X m,et al.. Low-temperature electron beam deposition of Zn-SnOx for stable and flexible perovskite solar cells [J]. Solar RRL., 2020,4(2):1900266.

[53] SHIN S S,YANG W S,YEOM E J,et al.. Tailoring of electron-collecting oxide nanoparticulate layer for flexible perovskite solar cells [J]. J. Phys. Chem. Lett., 2016,7(10):1845-1851.

[54] SUBBIAH A S,DHARA A K,MAHULI N,et al.. Ultra-thin atomic layer deposited-Nb2O5 as electron transport layer for co-evaporated MAPbI3 planar perovskite solar cells [J]. Energy Technol., 2019,8(4):1900878.

[55] WOJCIECHOWSKI K,LEIJTENS T,SIPROVA S,et al.. C60 as an efficient n-type compact layer in perovskite solar cells [J]. J. Phys. Chem. Lett., 2015,6(12):2399-2405.

[56] LIAN J R,LU B,NIU F F,et al.. Electron-transport materials in perovskite solar cells [J]. Small Methods, 2018,2(10):1800082-1-27.

[57] YANG D,YANG R X,REN X D,et al.. Hysteresis-suppressed high-efficiency flexible perovskite solar cells using solid-state ionic-liquids for effective electron transport [J]. Adv. Mater., 2016,28(26):5206-5213.

[58] LIU X Y,LIU Z Y,YE H B,et al.. Novel efficient C60-based inverted perovskite solar cells with negligible hysteresis [J]. Electrochim. Acta, 2018,288:115-125.

[59] LIU C,CAI M L,YANG Y,et al.. A C60/TiOx bilayer for conformal growth of perovskite films for UV stable perovskite solar cells [J]. J. Mater. Chem. A, 2019,7(18):11086-11094.

[60] YOU J B,HONG Z R,YANG Y,et al.. Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility [J]. ACS Nano, 2014,8(2):1674-1680.

[61] MA S,LIU X P,WU Y Z,et al.. Efficient and flexible solar cells with improved stability through incorporation of a multifunctional small molecule at PEDOT∶PSS/perovskite interface [J]. Solar Energy Mater. Solar Cells, 2020,208:110379.

[62] YE T L,CHEN W B,JIN S,et al.. Enhanced efficiency of planar heterojunction perovskite solar cells by a light soaking treatment on tris(pentafluorophenyl)borane-doped poly(triarylamine) solution [J]. ACS Appl. Mater. Interfaces, 2019,11(15):14004-14010.

[63] CHEN C,LI H,JIN J J,et al.. Highly enhanced long time stability of perovskite solar cells by involving a hydrophobic hole modification layer [J]. Nano Energy, 2017,32:165-173.

[64] JUNG J W,PARK J S,HAN I K,et al.. Flexible and highly efficient perovskite solar cells with a large active area incorporating cobalt-doped poly(3-hexylthiophene) for enhanced open-circuit voltage [J]. J. Mater. Chem. A, 2017,5(24):12158-12167.

[65] JO J W,SEO M S,JUNG J W,et al.. Development of organic-inorganic double hole-transporting material for high performance perovskite solar cells [J]. J. Power Sources, 2018,378:98-104.

[66] LIMA F A S,BELIATIS M J,ROTH B,et al.. Flexible ITO-free organic solar cells applying aqueous solution-processed V2O5 hole transport layer:an outdoor stability study [J]. APL Mater., 2016,4(2):026104-1-7.

[67] CHANDRASEKHAR P S,SEO Y H,NOH Y J,et al.. Room temperature solution-processed Fe doped NiOx as a novel hole transport layer for high efficient perovskite solar cells [J]. Appl. Surf. Sci., 2019,481:588-596.

[68] WANG Z Y,RONG X,WANG L Y,et al.. Dual role of amino-functionalized graphene quantum dots in NiOx films for efficient inverted flexible perovskite solar cell [J]. ACS Appl. Mater. Interfaces, 2020,12(7):8342-8350.

[69] MURUGADOSS G,THANGAMUTHU R,SENTHIL KUMAR S M. Fabrication of CH3NH3PbI3 perovskite-based solar cells:developing various new solvents for CuSCN hole transport material [J]. Solar Energy Mater. Solar Cells, 2017,164:56-62.

[70] BURSCHKA J,PELLET N,MOON S J,et al.. Sequential deposition as a route to high-performance perovskite-sensitized solar cells [J]. Nature, 2013,499(7458):316-319.

[71] HAN G S,LEE S,DUFF M L,et al.. Multi-functional transparent electrode for reliable flexible perovskite solar cells [J]. J. Power Sources, 2019,435:226768.

[72] MENDES M J,HAQUE S,SANCHEZ-SOBRADO O,et al.. Optimal-enhanced solar cell ultra-thinning with broadband nanophotonic light capture [J]. iScience, 2018,3:238-254.

[73] WU Y J,CHEN C,WANG H,et al.. Toward ultra-thin and full functional perovskite solar cells by broadband light scattering management and efficient interfacial modification [J]. Solar Energy Mater. Solar Cells, 2020,206:110297.

[74] ZHANG B X,BI W B,WU Y J,et al.. High-performance CsPbIBr2 perovskite solar cells:effectively promoted crystal growth by antisolvent and organic ion strategies [J]. ACS Appl. Mater. Interfaces, 2019,11(37):33868-33878.

[75] WU Y J,CHEN C,WANG H,et al.. Toward ultra-thin and full functional perovskite solar cells by broadband light scattering management and efficient interfacial modification [J]. Solar Energy Mater. Solar Cells, 2019, 206:110297.

[76] ONO L K,PARK N G,ZHU K,et al.. Perovskite solar cells-towards commercialization [J]. ACS Energy Lett., 2017,2(8):1749-1751.

[77] SHEIKH A D,MUNIR R,HAQUE A,et al.. Effects of high temperature and thermal cycling on the performance of perovskite solar cells:acceleration of charge recombination and deterioration of charge extraction [J]. ACS Appl. Mater. Interfaces, 2017,9(40):35018-35029.

[78] YANG Z C,AHMAD W,CHU L,et al.. Three-dimensional nanocomposite formed by hydrophobic multiwalled carbon nanotubes threading titanium dioxide as the counter electrode of enhanced performance dye-sensitized solar cells [J]. RSC Adv., 2016,6(60):55071-55078.

[79] DENG Y H,VAN BRACKLE C H,DAI X Z,et al.. Tailoring solvent coordination for high-speed,room-temperature blading of perovskite photovoltaic films [J]. Sci. Adv., 2019,5(12):eaax7537-1-8.

[80] WANG Z,ZENG L X,ZHANG C L,et al.. Rational interface design and morphology control for blade-coating efficient flexible perovskite solar cells with a record fill factor of 81% [J]. Adv. Funct. Mater., 2020,30(32):2001240.

[81] BU T L,LI J,ZHENG F,et al.. Universal passivation strategy to slot-die printed SnO2 for hysteresis-free efficient flexible perovskite solar module [J]. Nat. Commun., 2018,9(1):4609.

[82] PARK M,CHO W,LEE G,et al.. Highly reproducible large-area perovskite solar cell fabrication via continuous megasonic spray coating of CH3NH3PbI3 [J]. Small, 2019,15(1):1804005.

[83] JIANG Q L,REBOLLAR D,GONG J,et al.. Pseudohalide-induced moisture tolerance in perovskite CH3NH3Pb(SCN)2I thin films [J]. Angew. Chem. Int. Ed., 2015,54(26):7617-7620.

[84] HAN Y,MEYER S,DKHISSI Y,et al.. Degradation observations of encapsulated planar CH3NH3PbI3 perovskite solar cells at high temperatures and humidity [J]. J. Mater. Chem. A, 2015,3(15):8139-8147.

[85] KIM I S,CAO D H,BUCHHOLZ D B,et al.. Liquid water- and heat-resistant hybrid perovskite photovoltaics via an inverted ALD oxide electron extraction layer design [J]. Nano Lett., 2016,16(12):7786-7790.

[86] THEJO KALYANI N,DHOBLE S J. Novel materials for fabrication and encapsulation of OLEDs [J]. Renew. Sustain. Energy Rev., 2015,44:319-347.

[87] WEERASINGHE H C,DKHISSI Y,SCULLY A D,et al.. Encapsulation for improving the lifetime of flexible perovskite solar cells [J]. Nano Energy, 2015,18:118-125.

[88] ZHANG J,ZHANG W,CHENG H M,et al.. Critical review of recent progress of flexible perovskite solar cells [J]. Mater. Today, 2020,doi:10.1016/j.mattod.2020.05.002.

杨立群, 马晓辉, 郑士建, 陈聪, 戴其林, 宋宏伟. 柔性钙钛矿太阳能电池中电极材料和电荷传输材料的研究进展[J]. 发光学报, 2020, 41(10): 1175. YANG Li-qun, MA Xiao-hui, ZHENG Shi-jian, CHEN Cong, DAI Qi-lin, SONG Hong-wei. Research Progress on Electrode Materials and Charge Transport Materials in Flexible Perovskite Solar Cells[J]. Chinese Journal of Luminescence, 2020, 41(10): 1175.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!