Photonics Research, 2017, 5 (3): 03000245, Published Online: Oct. 9, 2018   

Methods to improve the performance of the swept source at 1.0  μm based on a polygon scanner

Author Affiliations
1 State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu 610054, China
2 School of Electronic and Communication Engineering, Guiyang University, Guiyang 550005, China
3 Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
4 College of Optoelectronic Technology, Chengdu University of Information Technology, Chengdu 610225, China
Copy Citation Text

Jing Cao, Pinghe Wang, Yan Zhang, Guohua Shi, Bo Wu, Shangjian Zhang, Yong Liu. Methods to improve the performance of the swept source at 1.0  μm based on a polygon scanner[J]. Photonics Research, 2017, 5(3): 03000245.

References

[1] S. R. Chinn, E. Swanson, J. G. Fujimoto. Optical coherence tomography using a frequency-tunable optical source. Opt. Lett., 1997, 22: 340-342.

[2] S. H. Yun, C. Boudoux, M. C. Pierce, J. F. de Boer, G. J. Tearney, B. E. Bouma. Extended-cavity semiconductor wavelength-swept laser for biomedical imaging. IEEE Photon. Technol. Lett., 2004, 16: 293-295.

[3] S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, B. E. Bouma. High-speed optical frequency-domain imaging. Opt. Express, 2003, 11: 2953-2963.

[4] R. Huber, M. Wojtkowski, K. Taira, J. G. Fujimoto, K. Hsu. Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles. Opt. Express, 2005, 13: 3513-3528.

[5] K. Totsuka, K. Isamoto, T. Sakai, A. Morosawa, C. H. Chong. MEMS scanner based swept source laser for optical coherence tomography. Proc. SPIE, 2010, 7554: 75542Q.

[6] V. Jayaramana, D. D. Johna, C. Burgnera, M. E. Robertsona, B. Potsaidb, J. Y. Jiangb, T. H. Tsaic, W. Choic, C. D. Luc, P. J. S. Heimb, J. G. Fujimotoc, A. E. Cableb. Recent advances in MEMS-VCSELs for high performance structural and functional SS-OCT imaging. Proc. SPIE, 2014, 8934: 893402.

[7] D. John, C. Burgner, B. Potsaid, M. Robertson, B. Lee, W. Choi, A. Cable, J. Fujimoto, V. Jayaraman. Wideband electrically pumped 1050-nm MEMS-tunable VCSEL for ophthalmic imaging. J. Lightwave Technol., 2015, 33: 3461-3468.

[8] R. Huber, M. Wojtkowski, J. G. Fujimoto. Fourier domain mode locking (FDML): a new laser operating regime and applications for optical coherence tomography. Opt. Express, 2006, 14: 3225-3237.

[9] V. J. Srinivasan, R. Huber, I. Gorczynska, J. G. Fujimoto, J. Y. Jiang, P. Reisen, A. E. Cable. High-speed, high-resolution optical coherence tomography retinal imaging with a frequency-swept laser at 850 nm. Opt. Lett., 2007, 32: 361-363.

[10] T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, R. Huber. Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain modelocked laser. Opt. Express, 2011, 19: 3044-3062.

[11] B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, J. G. Fujimoto. Ultrahigh speed 1050 nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second. Opt. Express, 2010, 18: 20029-20048.

[12] S. Marschall, T. klein, W. Thomas. Broadband Fourier domain mode-locked laser for optical coherence tomography at 1060  nm. Proc. SPIE, 2012, 8213: 82130R.

[13] Y. Kwon, M. Ko, M. Jung, I. Park, N. Kim, S. Han, H. Ryu, K. Park, M. Jeon. Dynamic sensor interrogation using wavelength-swept laser with a polygon-scanner-based wavelength filter. Sensors, 2013, 13: 9669-9678.

[14] Y. Wang, J. Nelson, Z. Chen, B. Reiser, R. Chuck, R. Windeler. Optimal wavelength for ultrahigh resolution optical coherence tomography. Opt. Express, 2003, 11: 1411-1417.

[15] E. C. W. Lee, J. F. de Boer, M. Mujat, H. Lim, S. H. Yun. In vivo optical frequency domain imaging of human retina and choroid. Opt. Express, 2006, 14: 4403-4411.

[16] A. Unterhuber, B. Považay, B. Hermann, H. Sattmann, A. Chavez-Pirson, W. Drexler. In vivo retinal optical coherence tomography at 1040 nm—enhanced penetration into the choroid. Opt. Express, 2005, 13: 3252-3258.

[17] R. Huber, D. C. Adler, J. G. Fujimoto. Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s. Opt. Lett., 2006, 31: 2975-2977.

[18] S. H. Yun, C. Boudoux, G. J. Tearney, B. E. Bouma. High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter. Opt. Lett., 2003, 28: 1981-1983.

[19] C. Chong, T. Suzuki, A. Morosawa, T. Sakai. Spectral narrowing effect by quasi-phase continuous tuning in high-speed wavelength swept light source. Opt. Express, 2008, 16: 21105-21118.

[20] M. K. K. Leung, A. Mariampillai, B. A. Standish, K. K. C. Lee, N. R. Munce, I. A. Vitkin, V. X. D. Yang. High-power wavelength-swept laser in Littman telescope-less polygon filter and dual-amplifier configuration for multichannel optical coherence tomography. Opt. Lett., 2009, 34: 2814-2816.

[21] C. Chong, A. Morosawa, T. Sakai. High-speed wavelength-swept laser source with high-linearity sweep for optical coherence tomography. IEEE J. Sel. Top. Quantum Electron., 2008, 14: 235-242.

[22] S. M. R. Motaghian Nezam. High-speed polygon-scanner-based wavelength-swept laser source in the telescope-less configurations with application in optical coherence tomography. Opt. Lett., 2008, 33: 1741-1743.

[23] C. Chong, A. Morosawa, T. Sakai. High speed wavelength-swept laser source with simple configuration for optical coherence tomography. Proc. SPIE, 2007, 6627: 662705.

[24] T. Huo, J. Zhang, J.-g. Zheng, T. Chen, C. Wang, N. Zhang, W. Liao, X. Zhang, P. Xue. Linear-in-wavenumber swept laser with an acousto-optic deflector for optical coherence tomography. Opt. Lett., 2014, 39: 247-250.

[25] W. Y. Oh, S. H. Yun, G. J. Tearney, B. E. Bouma. Wide tuning range wavelength-swept laser with two semiconductor optical amplifiers. IEEE Photon. Technol. Lett., 2005, 17: 678-680.

[26] Z. Jun, L. Gangjun, C. Zhongping. Ultra broad band Fourier domain mode locked swept source based on dual SOAs and WDM couplers. Proc. SPIE, 2010, 7554: 75541I.

[27] S.-W. Lee, H.-W. Song, M.-Y. Jung, S.-H. Kim. Wide tuning range wavelength-swept laser with a single SOA at 1020 nm for ultrahigh resolution Fourier-domain optical coherence tomography. Opt. Express, 2011, 19: 21227-21237.

[28] X. Wei, A. K. S. Lau, Y. Xu, K. K. Tsia, K. K. Y. Wong. 28 MHz swept source at 1.0  μm for ultrafast quantitative phase imaging. Biomed. Opt. Express, 2015, 6: 3855-3864.

[29] T. Huo, C. Wang, X. Zhang, T. Chen, W. Liao, W. Zhang, S. Ai, J.-C. Hsieh, P. Xue. Ultrahigh-speed optical coherence tomography utilizing all-optical 40  MHz swept-source. J. Biomed. Opt., 2015, 20: 030503.

[30] W.-Y. Oh, B. J. Vakoc, M. Shishkov, G. J. Tearney, B. E. Bouma. >400  kHz repetition rate wavelength-swept laser and application to high-speed optical frequency domain imaging. Opt. Lett., 2010, 35: 2919-2921.

[31] S. Marschall, T. Klein, W. Wieser, B. Biedermann, K. Hsu, B. Sumpf, K.-H. Hasler, G. Erbert, O. B. Jensen, C. Pedersen, R. Huber, P. E. Andersen. High-power FDML laser for swept source-OCT at 1060  nm. Proc. SPIE, 2010, 7715: 77150B.

Jing Cao, Pinghe Wang, Yan Zhang, Guohua Shi, Bo Wu, Shangjian Zhang, Yong Liu. Methods to improve the performance of the swept source at 1.0  μm based on a polygon scanner[J]. Photonics Research, 2017, 5(3): 03000245.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!