中国光学, 2019, 12 (3): 477, 网络出版: 2019-09-20  

用于引力波关键技术验证的近地低成本商业卫星设计

Near-earth low-cost commercial satellite design for key technologies verification of the gravitational waves detection mission
作者单位
中国科学院 微小卫星创新研究院, 上海 浦东新区 201203
引用该论文

陈琨, 蔡志鸣, 侍行剑, 邓剑峰, 余金培, 李华旺. 用于引力波关键技术验证的近地低成本商业卫星设计[J]. 中国光学, 2019, 12(3): 477.

CHEN Kun, CAI Zhi-ming, SHI Xing-jian, DENG Jian-feng, YU Jin-pei, LI Hua-wang. Near-earth low-cost commercial satellite design for key technologies verification of the gravitational waves detection mission[J]. Chinese Optics, 2019, 12(3): 477.

参考文献

[1] ABBOTT B P,ABBOTT R,ABBOTT T D,et al.. Observation of gravitational waves from a binary black hole merger[J]. Physical Review Letters,2016,116(6): 061102.

[2] WEINBERG S. Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity[M]. New York: Wiley,1972.

[3] MISNER C W,THORNE K S,WHEELER J A. Gravitation[M]. San Francisco: Freeman and Company,1973.

[4] SALLUSTI M,GATH P,WEISE D,et al.. LISA system design highlights[J]. Classical and Quantum Gravity,2009,26(9): 094015.

[5] 龚雪飞,徐生年,袁业飞,等.空间激光干涉引力波探测与早期宇宙结构形成[J].天文学进展,2015,33(1): 59-83.

    GONG X F,XU SH N,YUAN Y F,et al.. Laser interferometric gravitational wave detection in space and structure formation in the early universe[J]. Pogress in Astronomy,2015,33(1): 59-83.(in Chinese)

[6] JENNRICH O,BINETRUY P,COLPI M,et al.. NGO(New Gravitational wave Observatory) assessment study report(Yellow Book)[R]. Cosmology and Extra-galactic Astrophysics,2012.

[7] NI W T. ASTROD-GW: Overview and progress[J]. International Journal of Modern Physics D,2013,22(1): 1341004.

[8] BENDER P L. Wavefront distortion and beam pointing for LISA[J]. Classical and Quantum Gravity,2005,22(10): S339-S346.

[9] KAWAMURA S,NAKAMURA T,SETO N. Possibility of direct measurement of the acceleration of the universe using 0.1 Hz band laser interferometer gravitational wave antenna in space[J]. Physical Review Letters,2001,87(22): 221103.

[10] 万小波, 张晓敏, 黎明.天琴计划轨道构型长期漂移特性分析[J].中国空间科学技术,2017,37(3): 110-116.

    WAN X B,ZHANG X M,LI M. Analysis of long-period drift characteristics for orbit configuration of the Tianqin mission[J]. Chinese Space Science and Technology,2017,37(3): 110-116.(in Chinese)

[11] 胡戈锋,薛力军.高性价比商业微小卫星研制探索[J].国际太空,2018(1): 39-42.

    HU G F,XUE L J. Research of cost-effective commercial micro satellites[J]. Space International,2018(1): 39-42.(in Chinese)

[12] 罗子人, 白姗, 边星, 等.空间激光干涉引力波探测[J].力学进展,2013,43(4): 415-447.

    LUO Z R,BAI SH,BIAN X,et al.. Gravitational wave detection by space laser interferometry[J]. Advances in Mechanics,2013,43(4): 415-447.(in Chinese)

[13] 王智, 马军, 李静秋.空间引力波探测计划-LISA系统设计要点[J].中国光学,2015,8(6): 980-987.

    WANG ZH,MA J,LI J Q. Space-based gravitational wave detection mission: design highlights of LISA system[J]. Chinese Optics,2015,8(6): 980-987.(in Chinese)

[14] GATH P,SCHULTE H R,WEISE D. Challenges in the measurement and data-processing chain of the LISA mission[J]. Space Science Reviews,2010,151(1-3): 61-73.

[15] SCHLEICHER A,ZIEGLER T,SCHUBERT R,et al.. In-orbit performance of the LISA Pathfinder drag-free and attitude control system[J]. CEAS Space Journal,2018,10(4): 471-485.

[16] GIULICCHI L,WU S F,FENAL T. Attitude and orbit control systems for the LISA Pathfinder mission[J]. Aerospace Science and Technology,2013,24(1): 283-294.

[17] PAITA L,CESARI U,NANIA F,et al.. Alta FT-150: the thruster for LISA pathfinder and LISA/NGO missions[C]. Proceedings of the 9th LISA Symposium, Astronomical Society of the Pacific,2012: 245-249.

陈琨, 蔡志鸣, 侍行剑, 邓剑峰, 余金培, 李华旺. 用于引力波关键技术验证的近地低成本商业卫星设计[J]. 中国光学, 2019, 12(3): 477. CHEN Kun, CAI Zhi-ming, SHI Xing-jian, DENG Jian-feng, YU Jin-pei, LI Hua-wang. Near-earth low-cost commercial satellite design for key technologies verification of the gravitational waves detection mission[J]. Chinese Optics, 2019, 12(3): 477.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!