光学学报, 2019, 39 (11): 1114002, 网络出版: 2019-11-06   

纳秒中红外可调谐参量激光研究 下载: 1028次

Nanosecond Mid-Infrared Tunable Parametric Laser
作者单位
1 西安电子科技大学物理与光电工程学院, 陕西 西安 710071
2 中国科学院物理研究所光物理重点实验室, 北京 100190
引用该论文

李浩宁, 张大成, 朱江峰, 田文龙, 刘寒, 康仁铸, 魏志义. 纳秒中红外可调谐参量激光研究[J]. 光学学报, 2019, 39(11): 1114002.

Haoning Li, Dacheng Zhang, Jiangfeng Zhu, Wenlong Tian, Han Liu, Renzhu Kang, Zhiyi Wei. Nanosecond Mid-Infrared Tunable Parametric Laser[J]. Acta Optica Sinica, 2019, 39(11): 1114002.

参考文献

[1] 王彬. 高重频高效率2.1 μm KTP光参量振荡器研究[D]. 长春: 长春理工大学, 2016.

    WangB. Research on high repetition rate high efficiency 2.1 μm KTP optical parametric oscillator[D]. Changchun: Changchun University of Science and Technology, 2016.

[2] Godard A. Infrared (2-12 μm) solid-state laser sources: a review[J]. Comptes Rendus Physique, 2007, 8(10): 1100-1128.

[3] 聂丹丹, 李渊骥, 冯晋霞, 等. 利用单共振光学参量振荡器产生宽调谐高功率连续单频红外激光[J]. 中国激光, 2018, 45(4): 0401016.

    Nie D D, Li Y J, Feng J X, et al. Broadly tunable and high power continuous-wave single-frequency infrared laser by a singly resonant optical parametric oscillator[J]. Chinese Journal of Lasers, 2018, 45(4): 0401016.

[4] 谢旭凯. 低阈值中红外连续光参量振荡器及其高稳定小型化产品研发[D]. 南京: 南京大学, 2017.

    Xie XK. Low-threshold mid-infrared continuous-wave optical parametric oscillator and high-stability compact product research[D]. Nanjing: Nanjing University, 2017.

[5] 尹扬. 光电对抗对激光光源的要求[J]. 应用物理, 2018, 8(7): 318-323.

    Yin Y. Requirements for directed infrared countermeasures laser[J]. Applied Physics, 2018, 8(7): 318-323.

[6] 秦薪镇. 中红外光学参量振荡技术研究[D]. 杭州: 浙江大学, 2015.

    Qin XZ. Studies on the mid-infrared optical parametric oscillator[D]. Hangzhou: Zhejiang University, 2015.

[7] Frauchiger J, Lüthy W. Interaction of 3 μm radiation with matter[J]. Optical and Quantum Electronics, 1987, 19(4): 231-236.

[8] Tian W L, Wang Z H, Zhu J F, et al. Tunable femtosecond near-infrared source based on a Yb∶LYSO-laser-pumped optical parametric oscillator[J]. Chinese Physics B, 2016, 25(1): 014207.

[9] Faist J, Capasso F, Sivco D L, et al. Quantum cascade laser[J]. Science, 1994, 264(5158): 553-556.

[10] Garbuzov D Z, Lee H, Khalfin V, et al. 2.3-2.7-μm room temperature CW operation of InGaAsSb-AlGaAsSb broad waveguide SCH-QW diode lasers[J]. IEEE Photonics Technology Letters, 1999, 11(7): 794-796.

[11] 张大勇, 冯宇彤, 等. 可调谐中红外OPO激光器研究[J]. 激光与红外, 2012, 42(9): 986-988.

    Zhang D Y, Feng Y T, et al. . Research on tunable mid-infrared OPO laser[J]. Laser & Infrared, 2012, 42(9): 986-988.

[12] 魏星斌, 彭跃峰, 王卫民, 等. 百毫焦腔内KTP光参量振荡2 μm脉冲激光器[J]. 中国激光, 2010, 37(11): 2762-2765.

    Wei X B, Peng Y F, Wang W M, et al. 2 μm pulsed laser with 100 mJ intracavity KTP optical parametric oscillator[J]. Chinese Journal of Lasers, 2010, 37(11): 2762-2765.

[13] 沈德忠, 陈建荣. KTP晶体与器件的研究进展及市场展望[J]. 新材料产业, 2007( 10): 66- 71.

    Shen DZ, Chen JR. Research progress and market prospects of KTP crystals and devices[J]. Advanced Materials Industry, 2007( 10): 66- 71.

[14] 王月珠, 姚宝权, 王骐. 临界及非临界相位匹配KTP光学参量振荡器[J]. 光学学报, 2000, 20(10): 1368-1373.

    Wang Y Z, Yao B Q, Wang Q. KTP optical parametric oscillator with both critically and non-critically phase-matching[J]. Acta Optica Sinica, 2000, 20(10): 1368-1373.

[15] Kroll N M. Parametric amplification in spatially extended media and application to the design of tuneable oscillators at optical frequencies[J]. Proceedings of the IEEE, 1963, 51(1): 110-114.

[16] Giordmaine J A, Miller R C. Tunable coherent parametric oscillation in LiNbO3 at optical frequencies[J]. Physical Review Letters, 1965, 14(24): 973-976.

[17] Burnham R, Stolzenberger R A, Pinto A. Infrared optical parametric oscillator in potassium titanyl phosphate[J]. IEEE Photonics Technology Letters, 1989, 1(1): 27-28.

[18] Cui Q J, Shu X W, Le X Y, et al. 70-W average-power doubly resonant optical parametric oscillator at 2 μm with single KTP[J]. Applied Physics B, 2014, 117(2): 639-643.

[19] Verma S, Mishra C, Kumar V, et al. Generation of 2.1 μm wavelength from degenerate high gray track resistant potassium titanyl phosphate optical parametric oscillator[J]. Pramana, 2014, 82(2): 227-231.

[20] Mei J L, Zhong K, Wang M R, et al. High-repetition-rate terahertz generation in QPM GaAs with a compact efficient 2-μm KTP OPO[J]. IEEE Photonics Technology Letters, 2016, 28(14): 1501-1504.

[21] 谢小兵, 李世光, 朱小磊, 等. 2.05 μm单谐振纳秒脉冲光参量振荡器特性研究[J]. 中国激光, 2016, 43(12): 1208002.

    Xie X B, Li S G, Zhu X L, et al. Characteristics of single resonant nanosecond pulse optical parametric oscillator with output wavelength of 2.05 μm[J]. Chinese Journal of Lasers, 2016, 43(12): 1208002.

[22] Verma S, Bahuguna K C. Chitra, et al. Investigation of adhesive-free bonded potassium titanyl phosphate crystal based optical parametric oscillator for generation of 2.1 μm wavelength at high repetition rate[J]. Infrared Physics & Technology, 2018, 92: 244-248.

[23] 彭跃峰, 魏星斌, 王卫民, 等. 近衍射极限腔内光参量振荡2.7 μm激光器[J]. 中国激光, 2010, 37(9): 2376-2379.

    Peng Y F, Wei X B, Wang W M, et al. Intracavity optical parametric oscillator 2.7 μm laser with near diffraction limit beam quality[J]. Chinese Journal of Lasers, 2010, 37(9): 2376-2379.

[24] 卞进田. KTP OPO产生2.7 μm波段高峰值功率激光实验研究[J]. 光电技术应用, 2017, 32(4): 22-25.

    Bian J T. Experimental research on 2.7 μm wave band laser with high peak power generated by KTP optical parametric oscillator[J]. Electro-Optic Technology Application, 2017, 32(4): 22-25.

[25] Vanherzeele H, Bierlein J D, Zumsteg F C. Index of refraction measurements and parametric generation in hydrothermally grown KTiOPO4[J]. Applied Optics, 1988, 27(16): 3314-3316.

[26] 鲁燕华, 王卫民, 彭跃峰, 等. 内腔式Nd∶YAG激光抽运KTP双谐振光学参量振荡器[J]. 中国激光, 2006, 33(s1): 189-191.

    Lu Y H, Wang W M, Peng Y F, et al. Intracavity KTP doubly resonant optical parametric oscillator pumped by Nd∶YAG laser[J]. Chinese Journal of Lasers, 2006, 33(s1): 189-191.

[27] Gong M L, Li Z Y, Wang J S, et al. Noncollinear-pumped KTP optical parametric oscillator[J]. Applied Optics, 1999, 38(36): 7402-7405.

[28] 万勇. 纳秒光学参量振荡器及其应用技术研究[D]. 成都: 电子科技大学, 2006.

    WangY. Study on nanosecond optical parametric oscillator and its applications[D]. Chengdu: University of Electronic Science and Technology of China, 2006.

[29] Kaskow M, Gorajek L, Zendzian W, et al. MW peak power KTP-OPO-based “eye-safe” transmitter[J]. Opto-Electronics Review, 2018, 26(2): 188-193.

[30] 李鹏, 高小霞, 顾玉宗. 内腔倍频单共振光学参量振荡器输出特性分析[J]. 激光与光电子学进展, 2017, 54(9): 091901.

    Li P, Gao X X, Gu Y Z. Analysis of output characteristics of intracavity-frequency-doubled singly resonant optical parametric oscillator[J]. Laser & Optoelectronics Progress, 2017, 54(9): 091901.

[31] 卞进田, 孙晓泉, 聂劲松. 2.6~2.8 μm KTP OPO实验研究[J]. 量子电子学报, 2008, 25(2): 226-229.

    Bian J T, Sun X Q, Nie J S. Experimental study on KTP OPO producing 2.6-2.8 μm radiation[J]. Chinese Journal of Quantum Electronics, 2008, 25(2): 226-229.

[32] Brosnan S J. QE-[J]. Byer R L. Optical parametric oscillator threshold, linewidth studies. IEEE Journal of Quantum Electronics, 1979, 15(6): 415-431.

[33] 杨晓冬, 邵建新, 廖生鸿, 等. 刀口法测量高斯光束光斑半径研究[J]. 激光与红外, 2009, 39(8): 829-832.

    Yang X D, Shao J X, Liao S H, et al. Investigation on measuring beam width of the Gaussian beam by knife-edge method[J]. Laser & Infrared, 2009, 39(8): 829-832.

[34] 刘彻. 刀口法测量激光光斑尺寸大小的实验[J]. 通讯世界, 2017( 10): 240- 241.

    LiuC. Experiment of measuring the size of laser spot by knife edge method[J]. Telecom World, 2017( 10): 240- 241.

李浩宁, 张大成, 朱江峰, 田文龙, 刘寒, 康仁铸, 魏志义. 纳秒中红外可调谐参量激光研究[J]. 光学学报, 2019, 39(11): 1114002. Haoning Li, Dacheng Zhang, Jiangfeng Zhu, Wenlong Tian, Han Liu, Renzhu Kang, Zhiyi Wei. Nanosecond Mid-Infrared Tunable Parametric Laser[J]. Acta Optica Sinica, 2019, 39(11): 1114002.

本文已被 6 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!