Photonics Research, 2018, 6 (2): 02000072, Published Online: Jul. 10, 2018  

Passively mode-locked Er-doped fiber laser based on SnS2 nanosheets as a saturable absorber

Author Affiliations
1 Shandong Provincial Key Laboratory of Optics and Photonic Devices, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
2 Institute of Data Science and Technology, Shandong Normal University, Jinan 250014, China
Copy Citation Text

Kangdi Niu, Ruyi Sun, Qingyun Chen, Baoyuan Man, Huanian Zhang. Passively mode-locked Er-doped fiber laser based on SnS2 nanosheets as a saturable absorber[J]. Photonics Research, 2018, 6(2): 02000072.

References

[1] H. Zhang, D. Tang, R. J. Knize, L. Zhao, Q. Bao, K. P. Loh. Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser. Appl. Phys. Lett., 2010, 96: 111112.

[2] D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, A. C. Ferrari. Sub 200  fs pulse generation from a graphene mode-locked fiber laser. Appl. Phys. Lett., 2010, 97: 203106.

[3] Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, A. C. Ferrari. Graphene mode-locked ultrafast laser. ACS Nano, 2010, 4: 803-810.

[4] Z. Sun, D. Popa, T. Hasan, F. Torrisi, F. Wang, E. J. R. Kelleher, J. C. Travers, A. C. Ferrari. A stable, wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser. Nano Res., 2010, 3: 653-660.

[5] F. Bonaccorso, Z. Sun, T. Hasan, A. C. Ferrari. Graphene photonics and optoelectronics. Nat. Photonics, 2010, 4: 611-622.

[6] M. A. Solodyankin, E. D. Obraztsova, A. S. Lobach, A. I. Chernov, A. V. Tausenev, V. I. Konov, E. M. Dianov. Mode-locked 1.93  μm thulium fiber laser with a carbon nanotube absorber. Opt. Lett., 2008, 33: 1336-1338.

[7] F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, A. C. Ferrari. Wideband-tuneable, nanotube mode-locked, fibre laser. Nat. Nanotechnol., 2008, 3: 738-742.

[8] X. Zhao, Z. Zheng, L. Liu, Y. Liu, Y. Jiang, X. Yang, J. Zhu. Switchable, dual-wavelength passively mode-locked ultrafast fiber laser based on a single-wall carbon nanotube modelocker and intracavity loss tuning. Opt. Express, 2011, 19: 1168-1173.

[9] N. Nishizawa, Y. Seno, K. Sumimura, Y. Sakakibara, E. Itoga, H. Kataura, K. Itoh. All-polarization-maintaining Er-doped ultrashort-pulse fiber laser using carbon nanotube saturable absorber. Opt. Express, 2008, 16: 9429-9435.

[10] Z. C. Luo, M. Liu, H. Liu, X. W. Zheng, A. P. Luo, C. J. Zhao, H. Zhang, S. C. Wen, W. C. Xu. 2  GHz passively harmonic mode-locked fiber laser by a microfiber-based topological insulator saturable absorber. Opt. Lett., 2013, 38: 5212-5215.

[11] H. Liu, X. W. Zheng, M. Liu, N. Zhao, A. P. Luo, Z. C. Luo, C. J. Zhao, S. C. Wen. Femtosecond pulse generation from a topological insulator mode-locked fiber laser. Opt. Express, 2014, 22: 6868-6873.

[12] C. J. Zhao, Y. H. Zou, Y. Chen, Z. T. Wang, S. B. Lu, H. Zhang, S. C. Wen, D. Y. Tang. Wavelength-tunable picosecond soliton fiber laser with topological insulator: Bi2Se3 as a mode locker. Opt. Express, 2012, 20: 27888-27895.

[13] Y. H. Lin, C. Y. Yang, S. F. Lin, W. H. Tseng, Q. Bao, C. I. Wu, G. R. Lin. Soliton compression of the erbium-doped fiber laser weakly started mode-locking by nanoscale p-type Bi2Te3 topological insulator particles. Laser Phys. Lett., 2014, 11: 055107.

[14] J. Sotor, G. Sobon, W. Macherzynski, K. M. Abramski. Harmonically mode-locked Er-doped fiber laser based on a Sb2Te3 topological insulator saturable absorber. Laser Phys. Lett., 2014, 11: 055102.

[15] H. Xia, H. P. Li, C. Y. Lan, C. Li, X. X. Zhang, S. J. Zhang, Y. Liu. Ultrafast erbium-doped fiber laser mode-locked by a CVD-grown molybdenum disulfide (MoS2) saturable absorber. Opt. Express, 2014, 22: 17341-17348.

[16] J. Du, Q. K. Wang, G. B. Jiang, C. W. Xu, C. J. Zhao, Y. J. Xiang, Y. Chen, S. C. Wen, H. Zhang. Ytterbium-doped fiber laser passively mode locked by few-layer molybdenum disulfide (MoS2) saturable absorber functioned with evanescent field interaction. Sci. Rep., 2014, 4: 6346.

[17] D. Mao, Y. D. Wang, C. J. Ma, L. Han, B. Q. Jiang, X. T. Gan, S. J. Hua, W. D. Zhang, T. Mei, J. L. Zhao. WS2 mode-locked ultrafast fiber laser. Sci. Rep., 2015, 5: 7965.

[18] P. G. Yan, A. J. Liu, Y. S. Chen, J. Z. Wang, S. C. Ruan, H. Chen, J. F. Ding. Passively mode-locked fiber laser by a cell-type WS2 nanosheets saturable absorber. Sci. Rep., 2015, 5: 12587.

[19] B. H. Chen, X. Y. Zhang, K. Wu, H. Wang, J. Wang, J. P. Chen. Q-switched fiber laser based on transition metal dichalcogenides MoS2, MoSe2, WS2, and WSe2. Opt. Express, 2015, 23: 26723-26737.

[20] D. Mao, X. Y. She, B. B. Du, W. D. Zhang, K. Song, X. Q. Cui, B. Q. Jiang, T. Peng, J. L. Zhao. Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets. Sci. Rep., 2016, 6: 23583.

[21] J. Sotor, G. Sobon, M. Kowalczyk, W. Macherzynski, P. Paletko, K. M. Abramski. Ultrafast thulium-doped fiber laser mode locked with black phosphorus. Opt. Lett., 2015, 40: 3885-3888.

[22] Z. C. Luo, M. Liu, Z. N. Guo, X. F. Jiang, A. P. Luo, C. J. Zhao, X. F. Yu, W. C. Xu, H. Zhang. Microfiber-based few-layer black phosphorus saturable absorber for ultra-fast fiber laser. Opt. Express, 2015, 23: 20030-20039.

[23] Y. Chen, G. B. Jiang, S. Q. Chen, Z. N. Guo, X. F. Yu, C. J. Zhao, H. Zhang, Q. L. Bao, S. C. When, D. Y. Tang, D. Y. Fan. Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation. Opt. Express, 2015, 23: 12823-12833.

[24] C. Cheng, Z. Q. Li, Z. Q. Li, N. N. Dong, J. Wang, F. Chen. Tin diselenide as a new saturable absorber for generation of laser pulses at 1  μm. Opt. Express, 2017, 25: 6132-6140.

[25] D. Mao, X. Q. Cui, X. T. Gan, M. K. Li, W. D. Zhang, H. Lu, J. L. Zhao. Passively Q-switched and mode-locked fiber laser based on a ReS2 saturable absorber. IEEE J. Sel. Top. Quantum Electron., 2018, 24: 1100406.

[26] J. Seo, J. T. Jang, S. W. Park, C. J. Kim, B. W. Park, J. W. Cheon. Two-dimensional SnS2 nanoplates with extraordinary high discharge capacity for lithium ion batteries. Adv. Mater., 2008, 5: 5226-5230.

[27] B. Luo, Y. Fang, B. Wang, J. Zhou, H. Song, L. Zhi. Two dimensional graphene-SnS2 hybrids with superior rate capability for lithium ion storage. Energy Environ. Sci., 2012, 5: 5226-5230.

[28] J. T. Kai, K. X. Wang, Y. Z. Su, X. F. Qian, J. S. Chen. High stability and superior rate capability of three-dimensional hierarchical SnS2 microspheres as anode material in lithium ion batteries. J. Power Sources, 2011, 196: 3650-3654.

[29] A. J. Smith, P. E. Meek, W. Y. Liang. Raman scattering studies of SnS2 and SnSe2. J. Phys. C, 1977, 10: 1321-1323.

[30] J. Guo, T. Y. Ning, Y. S. Han, Y. Q. Sheng, C. H. Li, X. F. Zhao, Z. Y. Lu, B. Y. Man, Y. Jiao, S. Z. Jiang. Preparation, characterization, and nonlinear optical properties of hybridized graphene @ gold nanorods nanocomposites. Appl. Surf. Sci., 2018, 433: 45-50.

[31] B. Guo, Q. L. Yu, Y. Yao, P. F. Wang. Direct generation of dip-type sidebands from WS2 mode-locked fiber laser. Opt. Mater. Express, 2016, 6: 2475-2486.

[32] R. I. Woodward, E. J. R. Kelleher, R. C. T. Howe, G. Hu, F. Torrisi, T. Hasan, J. R. Taylor. Tunable Q-switched fiber laser based on saturable edge-state absorption in few-layer molybdenum disulfide (MoS2). Opt. Express, 2014, 22: 31113-31122.

[33] S. X. Wang, H. H. Yu, H. J. Zhang, A. Z. Wang, M. W. Zhao, Y. X. Chen, L. M. Mei, J. Y. Wang. Broadband few-layer MoS2 saturable absorbers. Adv. Mater., 2014, 26: 3538-3544.

Kangdi Niu, Ruyi Sun, Qingyun Chen, Baoyuan Man, Huanian Zhang. Passively mode-locked Er-doped fiber laser based on SnS2 nanosheets as a saturable absorber[J]. Photonics Research, 2018, 6(2): 02000072.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!