激光与光电子学进展, 2020, 57 (15): 150002, 网络出版: 2020-08-04   

基于新型可饱和吸收器件被动调Q激光器的研究进展 下载: 541次

Research Progress on Passively Q-Switched Lasers Based on New Saturable Absorption Devices
作者单位
1 长春理工大学理学院,吉林 长春 130022
2 中国科学院长春光学精密机械与物理研究所,吉林 长春 130033
引用该论文

杨飞, 李萌萌, 赵上龙, 付喜宏, 高兰兰. 基于新型可饱和吸收器件被动调Q激光器的研究进展[J]. 激光与光电子学进展, 2020, 57(15): 150002.

杨飞, 李萌萌, 赵上龙, 付喜宏, 高兰兰. Research Progress on Passively Q-Switched Lasers Based on New Saturable Absorption Devices[J]. Laser & Optoelectronics Progress, 2020, 57(15): 150002.

参考文献

[1] 江曼. 石墨烯、碳纳米管可饱和吸收体的制备及其用于被动调Q/锁模激光器的实验研究[D]. 西安: 西北大学, 2013.

    JiangM. Preparation of graphene and carbon nanotubes saturable absorbers and their experimental study on passively Q-switched/mode-locked lasers [D]. Xi'an:Northwest University, 2013.

[2] , et al. Measurement of ultrafast carrier dynamics in epitaxial graphene[J]. Applied Physics Letters, 2008, 92(4): 042116.

[3] , et al. femtosecond carrier dynamics and saturable absorption in graphene suspensions[J]. Applied Physics Letters, 2009, 95(19): 191911.

[4] , et al. The physics of ultrafast saturable absorption in graphene[J]. Optics Express, 2010, 18(5): 4564-4573.

[5] , et al. Fabrication of Ti3C2Tx MXene transparent thin films with tunable optoelectronic properties[J]. Advanced Electronic Materials, 2016, 2(6): 1600050.

[6] , et al. Fine structure constant defines visual transparency of graphene[J]. Science, 2008, 320(5881): 1308-1308.

[7] , et al. Flexible and conductive MXene films and nanocomposites with high capacitance[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(47): 16676-16681.

[8] , et al. Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T= F, O, or OH)[J]. Laser & Photonics Reviews, 2018, 12(2): 1870013.

[9] 康喆. 基于金纳米棒可饱和吸收体的锁模光纤激光器及其应用研究[D]. 长春: 吉林大学, 2015.

    KangZ. Study on mode-locked fiber lasers based on gold nanorods saturable absorbers and their applications[D]. Changchun: Jilin University, 2015.

[10] , 等. 石墨烯被动调Q光纤激光器研究进展[J]. 激光与红外, 2015, 45(10): 1157-1163.

    , et al. Research progress of graphene passively Q-switched fiber lasers[J]. Laser & Infrared, 2015, 45(10): 1157-1163.

[11] , 等. 石墨烯被动调Q掺N d3+激光器研究进展[J]. 激光技术, 2016, 40(2): 259-263.

    , et al. Research progress of graphene passively Q-switched Nd 3+-doped lasers[J]. Laser Technology, 2016, 40(2): 259-263.

[12] , et al. Tm∶KLu(WO4)2 microchip laser Q-switched by a graphene-based saturable absorber[J]. Optics Express, 2015, 23(11): 14108-14113.

[13] , et al. 28 μm passively Q-switched Er∶CaF2 diode-pumped laser[J]. Optical Materials Express, 2016, 6(5): 1570-1575.

[14] , et al. A passively Q-switched compact Er∶Lu2O3 ceramics laser at 2.8 μm with a graphene saturable absorber[J]. Applied Physics Express, 2019, 12(2): 022002.

[15] , et al. Monolayer graphene-based passively Q-switched Nd∶YAG laser[J]. Optik, 2016, 127(1): 243-245.

[16] . Zen D I M, et al. Q-switched thulium-doped fibre laser operating at 1900 nm using multi-layered graphene based saturable absorber[J]. IET Optoelectronics, 2014, 8(4): 155-160.

[17] , et al. Graphene Q-switched 1.4 μm solid state laser[J]. Laser Physics Letters, 2018, 15(7): 075801.

[18] , et al. Q-switching of waveguide lasers based on graphene/WS2 van der Waals heterostructure[J]. Photonics Research, 2017, 5(5): 406-410.

[19] , et al. High performance of a passively Q-switched mid-infrared laser with Bi2Te3/graphene composite SA[J]. Optics Letters, 2017, 42(4): 871-874.

[20] , et al. 2.0 μm Q-switched thulium-doped fiber laser with graphene oxide saturable absorber[J]. IEEE Photonics Journal, 2013, 5(4): 1501108.

[21] 曾英杰. 基于二维材料吸收体的全固态脉冲激光器研究[D]. 西安: 陕西师范大学, 2018.

    Zeng YJ. Research on all-solid-state pulsed laser based on 2D material absorber[D]. Xi'an:Shaanxi Normal University, 2018.

[22] , et al. High-power passively Q-switched Nd∶GdVO4 laser with a reflective graphene oxide saturable absorber[J]. Chinese Optics Letters, 2019, 17(2): 020009.

[23] , et al. High-efficiency, high-energy ytterbium-doped Q-switched fibre laser with graphene oxide-COOH saturable absorber[J]. Laser Physics Letters, 2018, 15(7): 075103.

[24] , et al. Efficient and compact Q-switched green laser using graphene oxide as saturable absorber[J]. Optics & Laser Technology, 2018, 98: 134-138.

[25] , et al. Nonlinear optical response of graphene oxide Langmuir-Blodgett film as saturable absorbers[J]. Nanomaterials, 2019, 9(4): 640.

[26] , et al. Compact passively Q-switched Nd∶GGG laser with antimony telluride-graphene oxide as saturable absorber[J]. Optics & Laser Technology, 2018, 105: 41-44.

[27] , et al. Observation of dark and bright pulses in Q-switched erbium doped fiber laser using graphene nano-platelets as saturable absorber[J]. Bulletin of Electrical Engineering and Informatics, 2019, 8(4): 1358-1365.

[28] . Recent advances in MXene: preparation, properties, and applications[J]. Frontiers of Physics, 2015, 10(3): 276-286.

[29] . Synthesis of two-dimensional materials by selective extraction[J]. Accounts of Chemical Research, 2015, 48(1): 128-135.

[30] , et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2[J]. Advanced Materials, 2011, 23(37): 4248-4253.

[31] , et al. Two-dimensional transition metal carbides[J]. ACS Nano, 2012, 6(2): 1322-1331.

[32] , et al. Control of electronic properties of 2D carbides (MXenes) by manipulating their transition metal layers[J]. Nanoscale Horizons, 2016, 1(3): 227-234.

[33] . 2D metal carbides and nitrides (MXenes) for energy storage[J]. Nature Reviews Materials, 2017, 2(2): 16098.

[34] , et al. Metallic MXene saturable absorber for femtosecond mode-locked lasers[J]. Advanced Materials, 2017, 29(40): 1702496.

[35] , et al. Saturable absorption in 2D Ti3C2MXene thin films for passive photonic diodes[J]. Advanced Materials, 2018, 30(10): 1705714.

[36] , et al. MXene Ti3C2Tx saturable absorber for pulsed laser at 1.3 μm[J]. Chinese Physics B, 2018, 27(9): 094214.

[37] , et al. MXene Ti3C2Tx absorber for a 1.06 μm passively Q-switched ceramic laser[J]. Laser Physics Letters, 2018, 15(8): 085805.

[38] , et al. A solid-state passively Q-switched Tm, Gd∶CaF2 laser with a Ti3C2Tx MXene absorber near 2 μm[J]. Laser Physics Letters, 2019, 16(1): 015803.

[39] . Ti2AlC-based saturable absorber for passive Q-switching of a fiber laser[J]. Optical Materials Express, 2019, 9(5): 2057-2066.

[40] , et al. Large third-order optical nonlinearity in Au∶SiO2 composite films near the percolation threshold[J]. Applied Physics Letters, 1997, 70(1): 119291.

[41] . Linear and nonlinear optical characteristics of composites containing metal nanoparticles with different sizes and shapes[J]. Optics Express, 2010, 18(7): 7488-7496.

[42] , et al. Ultrafast nonlinear optical response of a single gold nanorod near its surface plasmon resonance[J]. Physical Review Letters, 2011, 107(5): 057402.

[43] . Theory of passive mode locking of solid-state lasers using metal nanocomposites as slow saturable absorbers[J]. Optics Letters, 2012, 37(9): 1490-1492.

[44] , et al. Gold nanoparticles as a saturable absorber for visible 635 nm Q-switched pulse generation[J]. Optics Express, 2015, 23(18): 24071-24076.

[45] , et al. Gold nanoparticle based saturable absorber for Q-switching in 1.5 μm laser application[J]. Laser Physics, 2017, 27(11): 115101.

[46] , et al. Q-switched Ytterbium doped fibre laser using gold nanoparticles saturable absorber fabricated by electron beam deposition[J]. Optik, 2019, 182: 241-248.

[47] . Rosol A H A, Tahrin R A A, et al. Passive Q-switching operation of erbium-doped fiber laser with gold nano particles embedded into PVA film as saturable absorber[J]. Digest Journal of Nanomaterials & Biostructures (DJNB), 2019, 14(1): 23-27.

[48] . Rusdi M F M, Arof H, et al. Tunable Q-switched erbium-doped fiber laser using gold nanoparticles saturable absorber[J]. Nonlinear Optics, Quantum Optics: Concepts in Modern Optics, 2019, 50(4): 293-301.

[49] , et al. Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods[J]. Applied Physics Letters, 2006, 88(8): 083107.

[50] , et al. Gold nanorods as saturable absorbers for all-fiber passively Q-switched erbium-doped fiber laser[J]. Optical Materials Express, 2013, 3(11): 1986-1991.

[51] , 等. 基于金纳米棒可饱和吸收体的被动调Q掺铒光纤激光器[J]. 发光学报, 2013, 34(12): 1631-1635.

    , et al. Passively Q-switched Er-doped fiber lasers by using gold nanorods as saturable absorbers[J]. Chinese Journal of Luminescence, 2013, 34(12): 1631-1635.

[52] , et al. Passively Q-switched erbium-doped fiber laser based on gold nanorods[J]. Optik, 2014, 125(19): 5789-5793.

[53] , et al. Gold nanorods as single and combined saturable absorbers for a high-energy Q-switched Nd∶YAG solid-state laser[J]. IEEE Photonics Journal, 2015, 7(4): 1-10.

[54] , et al. Gold nanorods as the saturable absorber for a diode-pumped nanosecond Q-switched 2 μm solid-state laser[J]. Optics Letters, 2016, 41(12): 2700-2703.

[55] , et al. Large aspect ratio gold nanorods (LAR-GNRs) for mid-infrared pulse generation with a tunable wavelength near 3 μm[J]. Optics Express, 2019, 27(4): 4886-4896.

[56] , et al. Large energy, all-fiberized Q-switched pulse laser using a GNRs/PVA saturable absorber[J]. Optical Materials Express, 2015, 5(8): 1859-1867.

[57] KooJ, LeeJ, Lee JH. High energy Q-switching of an all-fiberized 1.55-μm laser using GNRs/PVA evanescent field interaction[C]∥2015 Opto-Electronics and Communications Conference (OECC), June 28-July 2, 2015, Shanghai, China. New York: IEEE, 2015: 1- 2.

[58] , et al. Gold nanorod as saturable absorber for Q-switched Yb-doped fiber laser[J]. Optics Communications, 2015, 346: 21-25.

[59] . Gold nanobipyramids as saturable absorbers for passively Q-switched laser generation in the 11 μm region[J]. Optics Letters, 2016, 41(6): 1150-1152.

[60] , et al. Tunable Nd, La∶SrF2 laser and passively Q-switched operation based on gold nanobipyramids saturable absorber[J]. Chinese Physics B, 2017, 26(2): 024205.

[61] , et al. Passively Q-switched laser based on gold nanobipyramids as saturable absorbers in the 1.3 μm region[J]. Optics Communications, 2018, 406: 209-213.

[62] 宋腾. 基于金纳米材料的被动调Q固体激光器研究[D]. 济南: 山东大学, 2017.

    SongT. Investigation of passively Q-switched solid-state lasers based on gold nano-materials[D]. Jinan: Shandong University, 2017.

[63] , et al. Passively Q-switched erbium doped fiber laser using a gold nanostars based saturable absorber[J]. Photonics Research, 2018, 6(6): 549-553.

[64] , et al. Gold nanowires with surface plasmon resonance as saturable absorbers for passively Q-switched fiber lasers at 2 μm[J]. Optical Materials Express, 2019, 9(5): 2406-2414.

杨飞, 李萌萌, 赵上龙, 付喜宏, 高兰兰. 基于新型可饱和吸收器件被动调Q激光器的研究进展[J]. 激光与光电子学进展, 2020, 57(15): 150002. 杨飞, 李萌萌, 赵上龙, 付喜宏, 高兰兰. Research Progress on Passively Q-Switched Lasers Based on New Saturable Absorption Devices[J]. Laser & Optoelectronics Progress, 2020, 57(15): 150002.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!