激光与光电子学进展, 2020, 57 (7): 071403, 网络出版: 2020-03-31   

基于ASE泵浦的1.7 μm波段可调谐多波长拉曼光纤激光器实验研究 下载: 1549次

1.7 μm Tunable Multi-Wavelength Raman Fiber Laser Based on Amplified Spontaneous Emission Pump
作者单位
1 长春理工大学空间光电技术国家和地方联合工程研究中心, 吉林 长春 130022
2 长春理工大学光电工程学院, 吉林 长春 130022
3 长春理工大学材料科学与工程学院, 吉林 长春 130022
引用该论文

贺振兴, 张鹏, 吴迪, 韩科选, 李晓燕, 都权力. 基于ASE泵浦的1.7 μm波段可调谐多波长拉曼光纤激光器实验研究[J]. 激光与光电子学进展, 2020, 57(7): 071403.

Zhenxing He, Peng Zhang, Di Wu, Kexuan Han, Xiaoyan Li, Quanli Du. 1.7 μm Tunable Multi-Wavelength Raman Fiber Laser Based on Amplified Spontaneous Emission Pump[J]. Laser & Optoelectronics Progress, 2020, 57(7): 071403.

参考文献

[1] Sharma U, Chang E W, Yun S H. Long-wavelength optical coherence tomography at 1.7 μm for enhanced imaging depth[J]. Optics Express, 2008, 16(24): 19712-19723.

[2] Mingareev I, Weirauch F, Olowinsky A, et al. Welding of polymers using a 2 μm thulium fiber laser[J]. Optics & Laser Technology, 2012, 44(7): 2095-2099.

[3] Quimby R S, Shaw L B, Sanghera J S, et al. Modeling of cascade lasing in Dy: chalcogenide glass fiber laser with efficient output at 4.5 μm[J]. IEEE Photonics Technology Letters, 2008, 20(2): 123-125.

[4] MaedaY, YamadaM, EndoT, et al. 1700 nm ASE light source and its application to mid-infrared spectroscopy[C]∥19th Optoelectronics and Communications Conference (OECC) and the 39th Australian Conference on Optical Fibre Technology (ACOFT). Engineers Australia, 2014: 410.

[5] Nishizawa N, Kawagoe H, Yamanaka M, et al. Wavelength dependence of ultrahigh-resolution optical coherence tomography using supercontinuum for biomedical imaging[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25(1): 1-15.

[6] Bajraszewski T, Wojtkowski M, Szkulmowski M, et al. Improved spectral optical coherence tomography using optical frequency comb[J]. Optics Express, 2008, 16(6): 4163-4176.

[7] Jung E J, Park J S, Jeong M Y, et al. Spectrally-sampled OCT for sensitivity improvement from limited optical power[J]. Optics Express, 2008, 16(22): 17457-17467.

[8] Agger S, Povlsen J H, Varming P. Single-frequency thulium-doped distributed-feedback fiber laser[J]. Optics Letters, 2004, 29(13): 1503-1505.

[9] Khegai AM, Melkumov MA, Riumkin KE, et al. Mode-locked bismuth fiber laser operating at 1.7 μm based on NALM[C]∥Laser Congress 2017 (ASSL, LAC), Nagoya, Aichi. Washington, D.C.: OSA, 2017: JTu2A. 20.

[10] Casula R, Penttinen J P, et al. Cascaded crystalline Raman lasers for extended wavelength coverage: continuous-wave, third-Stokes operation[J]. Optica, 2018, 5(11): 1406-1413.

[11] Liu J, Shen D Y, Huang H T, et al. High-power and highly efficient operation of wavelength-tunable Raman fiber lasers based on volume Bragg gratings[J]. Optics Express, 2014, 22(6): 6605.

[12] Zhang L, Jiang H W, Yang X Z, et al. Nearly-octave wavelength tuning of a continuous wave fiber laser[J]. Scientific Reports, 2017, 7: 42611.

[13] Zhang L, Dong J Y, Feng Y. High-power and high-order random Raman fiber lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(3): 1-6.

[14] Dong J Y, Zhang L, Jiang H W, et al. High order cascaded Raman random fiber laser with high spectral purity[J]. Optics Express, 2018, 26(5): 5275-5280.

[15] 吴迪, 张鹏, 李晓燕, 等. 基于级联调制器抽运源的1.7 μm波段宽带光源[J]. 中国激光, 2019, 46(5): 0506003.

    Wu D, Zhang P, Li X Y, et al. Broadband light source at 1.7 μm based on cascaded-modulator pumping[J]. Chinese Journal of Lasers, 2019, 46(5): 0506003.

[16] 都权力, 张鹏, 吴迪, 等. 基于多模激光抽运的1.7 μm波段拉曼增益谱实验研究[J]. 激光与光电子学进展, 2017, 54(12): 121405.

    Du Q L, Zhang P, Wu D, et al. Raman gain spectrum in 1.7 μm band pumped by multimode laser[J]. Laser & Optoelectronics Progress, 2017, 54(12): 121405.

[17] Kuang Q Q, Zhan L, Gu Z C, et al. High-energy passively mode-locked Raman fiber laser pumped by a CW multimode laser[J]. Journal of Lightwave Technology, 2015, 33(2): 391-395.

[18] 阿戈沃·戈文德. 非线性光纤光学[M]. 贾东方, 葛春峰, 译. 5版. 北京: 电子工业出版社, 2014: 205- 208.

    AgrawalG. Nonlinear fiber optics[M]. Jia D F, Ge C F, Transl. 5th ed. Beijing: Electronic Industry Press, 2014: 205- 208.

[19] Chang C H, Peng P C, Shiu R K, et al. Multiwavelength laser with adjustable ultranarrow wavelength spacing[J]. IEEE Photonics Journal, 2016, 8(4): 1-7.

[20] Jin P X, Lu H D, Yin Q W, et al. Expanding continuous tuning range of a CW single-frequency laser by combining an intracavity etalon with a nonlinear loss[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(5): 1-5.

[21] 冯素春, 任文华, 陈曼雅, 等. 基于双芯光纤滤波器和非线性偏振旋转效应的多波长光纤激光器[J]. 中国激光, 2014, 41(6): 0605006.

    Feng S C, Ren W H, Chen M Y, et al. Multi-wavelength fiber laser employing twin-core fiber filter and nonlinear polarization rotation[J]. Chinese Journal of Lasers, 2014, 41(6): 0605006.

[22] 古建标, 朱福南, 刘磊, 等. 1550 nm波段窄线宽高调谐带宽激光光源[J]. 中国激光, 2019, 46(9): 0901003.

    Gu J B, Zhu F N, Liu L, et al. 1550 nm laser source with narrow linewidth and high tuning bandwidth[J]. Chinese Journal of Lasers, 2019, 46(9): 0901003.

[23] 朱晓军, 耿健, 章国安, 等. 基于Sagnac环的可调谐双脉冲耗散孤子掺Yb光纤激光器[J]. 光学学报, 2019, 39(4): 0414002.

    Zhu X J, Geng J, Zhang G A, et al. Tunable double pulse dissipative solitons Yb-doped fiber laser based on sagnac loop[J]. Acta Optica Sinica, 2019, 39(4): 0414002.

[24] Dong P, Gui L L, Xiao X S, et al. Experimental investigation of supercontinuum generation in highly nonlinear dispersion-shifted fiber pumped by spectrum-sliced amplified spontaneous emission[J]. Optics Communications, 2009, 282(14): 3007-3011.

[25] Takushima Y. High average power, depolarized super-continuum generation using a 1.55 μm ASE noise source[J]. Optics Express, 2005, 13(15): 5871-5877.

[26] Smith R G. Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and Brillouin scattering[J]. Applied Optics, 1972, 11(11): 2489-2494.

[27] Fang X J, Claus R O. Polarization-independent all-fiber wavelength-division multiplexer based on a Sagnac interferometer[J]. Optics Letters, 1995, 20(20): 2146-2148.

[28] Kim R K, Han Y G. Switchable multiple lasing oscillations in an erbium-doped fiber ring laser using a single stage of a Sagnac loop mirror[J]. Applied Physics B, 2011, 103(4): 813-818.

贺振兴, 张鹏, 吴迪, 韩科选, 李晓燕, 都权力. 基于ASE泵浦的1.7 μm波段可调谐多波长拉曼光纤激光器实验研究[J]. 激光与光电子学进展, 2020, 57(7): 071403. Zhenxing He, Peng Zhang, Di Wu, Kexuan Han, Xiaoyan Li, Quanli Du. 1.7 μm Tunable Multi-Wavelength Raman Fiber Laser Based on Amplified Spontaneous Emission Pump[J]. Laser & Optoelectronics Progress, 2020, 57(7): 071403.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!