Photonics Research, 2018, 6 (6): 06000597, Published Online: Jul. 2, 2018  

Enhancement of stimulated emission by a metallic optofluidic resonator Download: 557次

Author Affiliations
1 State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
2 Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
Copy Citation Text

Bei Jiang, Hailang Dai, Xianfeng Chen. Enhancement of stimulated emission by a metallic optofluidic resonator[J]. Photonics Research, 2018, 6(6): 06000597.

References

[1] K. J. Vahala. Optical microcavities. Nature, 2003, 424: 839-846.

[2] C. Walther, J. Faist. Microcavity laser oscillating in a circuit-based resonator. Science, 2010, 327: 1495-1497.

[3] S. Yang, Y. Wang, H. Sun. Advances and prospects for whispering gallery mode microcavities. Adv. Opt. Mater., 2015, 3: 1136-1162.

[4] Y. Gao, R. J. Shiue, X. Gan, L. Li, C. Peng, I. Meric, L. Wang, A. Szep, D. Walker, J. Hone, D. Englund. High-speed electro-optic modulator integrated with graphene-boron nitride heterostructure and photonic crystal nanocavity. Nano Lett., 2015, 15: 2011-2018.

[5] D. Bajoni, P. Senellart, E. Wertz, I. Sagnes, A. Miard, A. Lemaître, J. Bloch. Optically tunable/switchable omnidirectionally spherical microlaser based on a dye-doped cholesteric liquid crystal microdroplet with an azo-chiral dopant. Opt. Express, 2013, 21: 15765-15776.

[6] S. Wu, S. Buckley, J. R. Schaibely, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, X. Xu. Monolayer semiconductor nanocavity lasers with ultralow thresholds. Nature, 2015, 520: 69-72.

[7] Q. Gu, B. Slutsky, F. Vallini, J. S. Smalley, M. P. Nezhad, N. C. Frateshi, Y. Fainman. Purcell effect in sub-wavelength semiconductor lasers. Opt. Express, 2013, 21: 15603-15617.

[8] H. Yokoyama, S. D. Broson. Rate equation analysis of microcavity lasers. J. Appl. Phys., 1989, 66: 4801-4805.

[9] Y. Wang, Z. Cao, T. Yu, H. Li, Q. Shen. Enhancement of superprism effect based on the strong dispersion effect of ultrahigh-order modes. Opt. Lett., 2008, 33: 1276-1278.

[10] H. Dai, Z. Cao, Y. Wang, M. Sang, W. Yuan, F. Chen, X. Chen. Concentric circular grating b generated by the patterning trapping of nanoparticles in an optofluidic chip. Sci. Rep., 2016, 6: 32018.

[11] Y. Zheng, Z. Cao, X. Chen. Conical reflection of light during free-space coupling into a symmetrical metal-cladding waveguide. J. Opt. Soc. Am. A, 2013, 30: 1901-1904.

[12] P. Andrew, W. L. Barnes. Energy transfer across a metal film mediated by surface plasmon polaritons. Science, 2004, 306: 1002-1005.

[13] J. R. Lakowitz. Principle of fluorescence spectroscopy. J. Biomed. Opt., 2008, 13: 029901.

[14] W. Yuan, C. Yin, P. Xiao, X. Wang, J. Sun, S. Huang, X. Chen, Z. Cao. Microsecond-scale switching time of magnetic fluids due to the optical trapping effect in waveguide structure. Microfluid. Nanofluid., 2011, 11: 781-785.

Bei Jiang, Hailang Dai, Xianfeng Chen. Enhancement of stimulated emission by a metallic optofluidic resonator[J]. Photonics Research, 2018, 6(6): 06000597.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!