Photonics Research, 2020, 8 (12): 12000A91, Published Online: Nov. 13, 2020  

Engineering a light–matter strong coupling regime in perovskite-based plasmonic metasurface: quasi-bound state in the continuum and exceptional points Download: 706次

Author Affiliations
1 Université de Lyon, Institut des Nanotechnologies de Lyon, INL/CNRS, Ecole Centrale de Lyon, 36 avenue Guy de Collongue, 69130 Ecully, France
2 College of Engineering and Computer Science, VinUniversity, Hanoi 14000, Vietnam
3 Université de Lyon, Institut des Nanotechnologies de Lyon, INL/CNRS, INSA-Lyon, 7 avenue Jean Capelle, 69621 Villeurbanne, France
4 Institut Universitaire de France (IUF), Paris, France
Copy Citation Text

Leran Lu, Quynh Le-Van, Lydie Ferrier, Emmanuel Drouard, Christian Seassal, Hai Son Nguyen. Engineering a light–matter strong coupling regime in perovskite-based plasmonic metasurface: quasi-bound state in the continuum and exceptional points[J]. Photonics Research, 2020, 8(12): 12000A91.

References

[1] C. Weisbuch, M. Nishioka, A. Ishikawa, Y. Arakawa. Observation of the coupled exciton–photon mode splitting in a semiconductor quantum microcavity. Phys. Rev. Lett., 1992, 69: 3314-3317.

[2] T. K. Hakala, A. J. Moilanen, A. I. Väkeväinen, R. Guo, J.-P. Martikainen, K. S. Daskalakis, H. T. Rekola, A. Julku, P. Törmä. Bose–Einstein condensation in a plasmonic lattice. Nat. Phys., 2018, 14: 739-744.

[3] M. Ramezani, Q. Le-Van, A. Halpin, J. G. Rivas. Nonlinear emission of molecular ensembles strongly coupled to plasmonic lattices with structural imperfections. Phys. Rev. Lett., 2018, 121: 243904.

[4] J. Bellessa, C. Bonnand, J. C. Plenet, J. Mugnier. Strong coupling between surface plasmons and excitons in an organic semiconductor. Phys. Rev. Lett., 2004, 93: 036404.

[5] J. Dintinger, S. Klein, F. Bustos, W. L. Barnes, T. W. Ebbesen. Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays. Phys. Rev. B, 2005, 71: 035424.

[6] C. Symonds, J. Bellessa, J. Plenet, A. Bréhier, R. Parashkov, J.-S. Lauret, E. Deleporte. Emission of hybrid organic-inorganic exciton/plasmon mixed states. Appl. Phys. Lett., 2007, 90: 091107.

[7] C. Symonds, C. Bonnand, J. Plenet, A. Bréhier, R. Parashkov, J. Lauret, E. Deleporte, J. Bellessa. Particularities of surface plasmon-exciton strong coupling with large Rabi splitting. New J. Phys., 2008, 10: 065017.

[8] F. van Beijnum, P. J. van Veldhoven, E. J. Geluk, M. J. A. de Dood, G. W. ’t Hooft, M. P. van Exter. Surface plasmon lasing observed in metal hole arrays. Phys. Rev. Lett., 2013, 110: 206802.

[9] T. Freixanet, B. Sermage, A. Tiberj, R. Planel. In-plane propagation of excitonic cavity polaritons. Phys. Rev. B, 2000, 61: 7233-7236.

[10] S. A. Guebrou, J. Laverdant, C. Symonds, S. Vignoli, J. Bellessa. Spatial coherence properties of surface plasmon investigated by Young’s slit experiment. Opt. Lett., 2012, 37: 2139-2141.

[11] R. Houdré, C. Weisbuch, R. P. Stanley, U. Oesterle, P. Pellandini, M. Ilegems. Measurement of cavity-polariton dispersion curve from angle-resolved photoluminescence experiments. Phys. Rev. Lett., 1994, 73: 2043-2046.

[12] M. Wouters. Resonant polariton-polariton scattering in semiconductor microcavities. Phys. Rev. B, 2007, 76: 045319.

[13] M. Wouters, I. Carusotto. Parametric oscillation threshold of semiconductor microcavities in the strong coupling regime. Phys. Rev. B, 2007, 75: 075332.

[14] T. Byrnes, N. Y. Kim, Y. Yamamoto. Exciton–polariton condensates. Nat. Phys., 2014, 10: 803-813.

[15] J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. Keeling, F. Marchetti, M. Szymańska, R. André, J. Staehli, V. Savona, P. Littlewood, B. Deveaud, D. le Si. Bose–Einstein condensation of exciton polaritons. Nature, 2006, 443: 409-414.

[16] A. Amo, J. Lefrère, S. Pigeon, C. Adrados, C. Ciuti, I. Carusotto, R. Houdré, E. Giacobino, A. Bramati. Superfluidity of polaritons in semiconductor microcavities. Nat. Phys., 2009, 5: 805-810.

[17] H. S. Nguyen, D. Gerace, I. Carusotto, D. Sanvitto, E. Galopin, A. Lematre, I. Sagnes, J. Bloch, A. Amo. Acoustic black hole in a stationary hydrodynamic flow of microcavity polaritons. Phys. Rev. Lett., 2015, 114: 036402.

[18] P. St-Jean, V. Goblot, E. Galopin, A. Lemaître, T. Ozawa, L. Le Gratiet, I. Sagnes, J. Bloch, A. Amo. Lasing in topological edge states of a one-dimensional lattice. Nat. Photonics, 2017, 11: 651-656.

[19] S. Klembt, T. H. Harder, O. A. Egorov, K. Winkler, R. Ge, M. A. Bandres, M. Emmerling, L. Worschech, T. C. H. Liew, M. Segev, C. Schneider, S. Höfling. Exciton–polariton topological insulator. Nature, 2018, 562: 552-556.

[20] A. Imamoglu, R. J. Ram, S. Pau, Y. Yamamoto. Nonequilibrium condensates and lasers without inversion: exciton–polariton lasers. Phys. Rev. A, 1996, 53: 4250-4253.

[21] J. Ciers, J. G. Roch, J.-F. Carlin, G. Jacopin, R. Butté, N. Grandjean. Propagating polaritons in III-nitride slab waveguides. Phys. Rev. Appl., 2017, 7: 034019.

[22] O. Jamadi, F. Reveret, P. Disseix, F. Medard, J. Leymarie, A. Moreau, D. Solnyshkov, C. Deparis, M. Leroux, E. Cambril, S. Bouchoule, J. Zuniga-Perez, G. Malpuech. Edge-emitting polariton laser and amplifier based on a ZnO waveguide. Light Sci. Appl., 2018, 7: 82.

[23] V. C. Nikolis, A. Mischok, B. Siegmund, J. Kublitski, X. Jia, J. Benduhn, U. Hörmann, D. Neher, M. C. Gather, D. Spoltore, K. Vandewal. Strong light–matter coupling for reduced photon energy losses in organic photovoltaics. Nat. Commun., 2019, 10: 3706.

[24] Y. Wang, W. Knoll, J. Dostalek. Bacterial pathogen surface plasmon resonance biosensor advanced by long range surface plasmons and magnetic nanoparticle assays. Anal. Chem., 2012, 84: 8345-8350.

[25] J. A. Hutchison, T. Schwartz, C. Genet, E. Devaux, T. W. Ebbesen. Modifying chemical landscapes by coupling to vacuum fields. Angew. Chem. (Int. Ed.), 2012, 51: 1592-1596.

[26] A. Thomas, J. George, A. Shalabney, M. Dryzhakov, S. J. Varma, J. Moran, T. Chervy, X. Zhong, E. Devaux, C. Genet, J. A. Hutchison, T. W. Ebbesen. Ground-state chemical reactivity under vibrational coupling to the vacuum electromagnetic field. Angew. Chem. (Int. Ed.), 2016, 55: 11462-11466.

[27] K. Abdel-Baki, F. Boitier, H. Diab, G. Lanty, K. Jemli, F. Lédée, D. Garrot, E. Deleporte, J. S. Lauret. Exciton dynamics and non-linearities in two-dimensional hybrid organic perovskites. J. Appl. Phys., 2016, 119: 064301.

[28] A. Fieramosca, L. Polimeno, V. Ardizzone, L. De Marco, M. Pugliese, V. Maiorano, M. De Giorgi, L. Dominici, G. Gigli, D. Gerace, D. Ballarini, D. Sanvitto. Two-dimensional hybrid perovskites sustaining strong polariton interactions at room temperature. Sci. Adv., 2019, 5: eaav9967.

[29] T. Ishihara. Optical properties of PbI-based perovskite structures. J. Lumin., 1994, 60-61: 269-274.

[30] N. Takada, T. Kamata, D. D. C. Bradley. Polariton emission from polysilane-based organic microcavities. Appl. Phys. Lett., 2003, 82: 1812-1814.

[31] G. Lanty, A. Bréhier, R. Parashkov, J.-S. Lauret, E. Deleporte. Strong exciton-photon coupling at room temperature in microcavities containing two-dimensional layered perovskite compounds. New J. Phys., 2008, 10: 065007.

[32] R. Su, C. Diederichs, J. Wang, T. C. H. Liew, J. Zhao, S. Liu, W. Xu, Z. Chen, Q. Xiong. Room-temperature polariton lasing in all-inorganic perovskite nanoplatelets. Nano Lett., 2017, 17: 3982-3988.

[33] R. Su, J. Wang, J. Zhao, J. Xing, W. Zhao, C. Diederichs, T. C. H. Liew, Q. Xiong. Room temperature long-range coherent exciton polariton condensate flow in lead halide perovskites. Sci. Adv., 2018, 4: eaau0244.

[34] T. J. S. Evans, A. Schlaus, Y. Fu, X. Zhong, T. L. Atallah, M. S. Spencer, L. E. Brus, S. Jin, X.-Y. Zhu. Continuous-wave lasing in cesium lead bromide perovskite nanowires. Adv. Opt. Mater., 2018, 6: 1700982.

[35] W. Bao, X. Liu, F. Xue, F. Zheng, R. Tao, S. Wang, Y. Xia, M. Zhao, J. Kim, S. Yang, Q. Li, Y. Wang, Y. Wang, L.-W. Wang, A. H. MacDonald, X. Zhang. Observation of Rydberg exciton polaritons and their condensate in a perovskite cavity. Proc. Natl. Acad. Sci. USA, 2019, 116: 20274-20279.

[36] SuR.GhoshS.WangJ.LiuS.DiederichsC.LiewT. C. H.XiongQ., “Observation of exciton polariton condensation in a perovskite lattice at room temperature,” Nat. Phys.16, 301306 (2020).NPAHAX1745-2481

[37] L. Polimeno, A. Fieramosca, G. Lerario, M. Cinquino, M. De Giorgi, D. Ballarini, F. Todisco, L. Dominici, V. Ardizzone, M. Pugliese, C. T. Prontera, V. Maiorano, G. Gigli, L. De Marco, D. Sanvitto. Observation of two thresholds leading to polariton condensation in 2D hybrid perovskites. Adv. Opt. Mater., 2020, 8: 2000176.

[38] S. Zhang, J. Chen, J. Shi, L. Fu, W. Du, X. Sui, Y. Mi, Z. Jia, F. Liu, J. Shi, X. Wu, N. Tang, Q. Zhang, X. Liu. Trapped exciton–polariton condensate by spatial confinement in a perovskite microcavity. ACS Photon., 2020, 7: 327-337.

[39] ShangQ.LiM.ZhaoL.ChenD.ZhangS.ChenS.GaoP.ShenC.XingJ.XingG.ShenB.LiuX.ZhangQ., “Role of the exciton–polariton in a continuous-wave optically pumped CsPbBr3 perovskite laser,” Nano Lett.20, 66366643 (2020).NALEFD1530-6984

[40] S.-T. Ha, C. Shen, J. Zhang, Q. Xiong. Laser cooling of organic-inorganic lead halide perovskites. Nat. Photonics, 2016, 10: 115-121.

[41] W. Niu, L. A. Ibbotson, D. Leipold, E. Runge, G. V. Prakash, J. J. Baumberg. Image excitons and plasmon-exciton strong coupling in two-dimensional perovskite semiconductors. Phys. Rev. B, 2015, 91: 161303.

[42] H. S. Nguyen, Z. Han, K. Abdel-Baki, X. Lafosse, A. Amo, J. S. Lauret, E. Deleporte, S. Bouchoule, J. Bloch. Quantum confinement of zero-dimensional hybrid organic-inorganic polaritons at room temperature. Appl. Phys. Lett., 2014, 104: 081103.

[43] S. Zhang, Q. Shang, W. Du, J. Shi, Z. Wu, Y. Mi, J. Chen, F. Liu, Y. Li, M. Liu, Q. Zhang, X. Liu. Strong exciton–photon coupling in hybrid inorganic-organic perovskite micro/nanowires. Adv. Opt. Mater., 2018, 6: 1701032.

[44] Q. Shang, S. Zhang, Z. Liu, J. Chen, P. Yang, C. Li, W. Li, Y. Zhang, Q. Xiong, X. Liu, Q. Zhang. Surface plasmon enhanced strong exciton–photon coupling in hybrid inorganic-organic perovskite nanowires. Nano Lett., 2018, 18: 3335-3343.

[45] T. Fujita, Y. Sato, T. Kuitani, T. Ishihara. Tunable polariton absorption of distributed feedback microcavities at room temperature. Phys. Rev. B, 1998, 57: 12428-12434.

[46] J. Ishi-Hayase, T. Ishihara. Fundamental optical properties of photonic crystal slabs in the strong coupling regime. Semicond. Sci. Technol., 2003, 18: S411-S418.

[47] N. H. M. Dang, D. Gerace, E. Drouard, G. Trippé-Allard, F. Lédée, R. Mazurczyk, E. Deleporte, C. Seassal, H. S. Nguyen. Tailoring dispersion of room-temperature exciton–polaritons with perovskite-based subwavelength metasurfaces. Nano Lett., 2020, 20: 2113-2119.

[48] B. Zhen, C. W. Hsu, L. Lu, A. D. Stone, M. Soljačić. Topological nature of optical bound states in the continuum. Phys. Rev. Lett., 2014, 113: 257401.

[49] C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, M. Soljačić. Bound states in the continuum. Nat. Rev. Mater., 2016, 1: 16048.

[50] M.-A. Miri, A. Alù. Exceptional points in optics and photonics. Science, 2019, 363: eaar7709.

[51] B. Zhen, C. W. Hsu, Y. Igarashi, L. Lu, I. Kaminer, A. Pick, S.-L. Chua, J. D. Joannopoulos, M. Soljačić. Spawning rings of exceptional points out of Dirac cones. Nature, 2015, 525: 354-358.

[52] A. Pick, B. Zhen, O. D. Miller, C. W. Hsu, F. Hernandez, A. W. Rodriguez, M. Soljačić, S. G. Johnson. General theory of spontaneous emission near exceptional points. Opt. Express, 2017, 25: 12325-12348.

[53] J.-H. Park, A. Ndao, W. Cai, L. Hsu, A. Kodigala, T. Lepetit, Y.-H. Lo, B. Kanté. Symmetry-breaking-induced plasmonic exceptional points and nanoscale sensing. Nat. Phys., 2020, 16: 462-468.

[54] S. Zhang, P. Audebert, Y. Wei, A. Al Choueiry, G. Lanty, A. Bréhier, L. Galmiche, G. Clavier, C. Boissière, J.-S. Lauret, E. Deleporte. Preparations and characterizations of luminescent two dimensional organic-inorganic perovskite semiconductors. Materials, 2010, 3: 3385-3406.

[55] P. B. Johnson, R.-W. Christy. Optical constants of the noble metals. Phys. Rev. B, 1972, 6: 4370-4379.

[56] C. Huang, C. Zhang, S. Xiao, Y. Wang, Y. Fan, Y. Liu, N. Zhang, G. Qu, H. Ji, J. Han, L. Ge, Y. Kivshar, Q. Song. Ultrafast control of vortex microlasers. Science, 2020, 367: 1018-1021.

[57] Y. Akimov, M. E. Pam, S. Sun. Kretschmann–Raether configuration: revision of the theory of resonant interaction. Phys. Rev. B, 2017, 96: 155433.

[58] N. Pourdavoud, S. Wang, A. Mayer, T. Hu, Y. Chen, A. Marianovich, W. Kowalsky, R. Heiderhoff, H.-C. Scheer, T. Riedl. Photonic nanostructures patterned by thermal nanoimprint directly into organo-metal halide perovskites. Adv. Mater., 2017, 29: 1605003.

[59] R. Schmager, G. Gomard, B. S. Richards, U. W. Paetzold. Nanophotonic perovskite layers for enhanced current generation and mitigation of lead in perovskite solar cells. Sol. Energy Mater. Sol. Cells, 2019, 192: 65-71.

[60] Z. Li, J. Moon, A. Gharajeh, R. Haroldson, R. Hawkins, W. Hu, A. Zakhidov, Q. Gu. Room-temperature continuous-wave operation of organometal halide perovskite lasers. ACS Nano, 2018, 12: 10968-10976.

[61] Y. Gao, C. Huang, C. Hao, S. Sun, L. Zhang, C. Zhang, Z. Duan, K. Wang, Z. Jin, N. Zhang, A. V. Kildishev, C.-W. Qiu, Q. Song, S. Xiao. Lead halide perovskite nanostructures for dynamic color display. ACS Nano, 2018, 12: 8847-8854.

[62] Z. Li, J. S. T. Smalley, R. Haroldson, D. Lin, R. Hawkins, A. Gharajeh, J. Moon, J. Hou, C. Zhang, W. Hu, A. Zakhidov, Q. Gu. Active perovskite hyperbolic metasurface. ACS Photon., 2020, 7: 1754-1761.

[63] JoannopoulosJ. D.JohnsonS. G.WinnJ. N.MeadeR. D., Photonic Crystals: Molding the Flow of Light, 2nd Ed. (Princeton University, 2008).

[64] V. Liu, S. Fan. S4: a free electromagnetic solver for layered periodic structures. Comput. Phys. Commun., 2012, 183: 2233-2244.

[65] Z. Lin, A. Pick, M. Lončar, A. W. Rodriguez. Enhanced spontaneous emission at third-order Dirac exceptional points in inverse-designed photonic crystals. Phys. Rev. Lett., 2016, 117: 107402.

[66] F. Zhong, K. Ding, Y. Zhang, S. Zhu, C. Chan, H. Liu. Angle-resolved thermal emission spectroscopy characterization of non-Hermitian metacrystals. Phys. Rev. Appl., 2020, 13: 014071.

[67] D. Gerace, L. C. Andreani. Quantum theory of exciton-photon coupling in photonic crystal slabs with embedded quantum wells. Phys. Rev. B, 2007, 75: 235325.

[68] V. Kravtsov, E. Khestanova, F. A. Benimetskiy, T. Ivanova, A. K. Samusev, I. S. Sinev, D. Pidgayko, A. M. Mozharov, I. S. Mukhin, M. S. Lozhkin, Y. V. Kapitonov, A. S. Brichkin, V. D. Kulakovskii, I. A. Shelykh, A. I. Tartakovskii, P. M. Walker, M. S. Skolnick, D. N. Krizhanovskii, I. V. Iorsh. Nonlinear polaritons in a monolayer semiconductor coupled to optical bound states in the continuum. Light Sci. Appl., 2020, 9: 56.

[69] T. Gao, E. Estrecho, K. Y. Bliokh, T. C. H. Liew, M. D. Fraser, S. Brodbeck, M. Kamp, C. Schneider, S. Höfling, Y. Yamamoto, F. Nori, Y. S. Kivshar, A. G. Truscott, R. G. Dall, E. A. Ostrovskaya. Observation of non-Hermitian degeneracies in a chaotic exciton–polariton billiard. Nature, 2015, 526: 554-558.

[70] T. Gao, G. Li, E. Estrecho, T. C. H. Liew, D. Comber-Todd, A. Nalitov, M. Steger, K. West, L. Pfeiffer, D. W. Snoke, A. V. Kavokin, A. G. Truscott, E. A. Ostrovskaya. Chiral modes at exceptional points in exciton–polariton quantum fluids. Phys. Rev. Lett., 2018, 120: 065301.

[71] H. Shen, B. Zhen, L. Fu. Topological band theory for non-Hermitian Hamiltonians. Phys. Rev. Lett., 2018, 120: 146402.

[72] K. Kawabata, T. Bessho, M. Sato. Classification of exceptional points and non-Hermitian topological semimetals. Phys. Rev. Lett., 2019, 123: 066405.

[73] M. Saliba, S. M. Wood, J. B. Patel, P. K. Nayak, J. Huang, J. A. Alexander-Webber, B. Wenger, S. D. Stranks, M. T. Hörantner, J. T.-W. Wang, R. J. Nicholas, L. M. Herz, M. B. Johnston, S. M. Morris, H. J. Snaith, M. K. Riede. Structured organic-inorganic perovskite toward a distributed feedback laser. Adv. Mater., 2016, 28: 923-929.

[74] S. Chen, K. Roh, J. Lee, W. K. Chong, Y. Lu, N. Mathews, T. C. Sum, A. Nurmikko. A photonic crystal laser from solution based organo-lead iodide perovskite thin films. ACS Nano, 2016, 10: 3959-3967.

[75] H. Wang, R. Haroldson, B. Balachandran, A. Zakhidov, S. Sohal, J. Y. Chan, A. Zakhidov, W. Hu. Nanoimprinted perovskite nanograting photodetector with improved efficiency. ACS Nano, 2016, 10: 10921-10928.

[76] H. Wang, S.-C. Liu, B. Balachandran, J. Moon, R. Haroldson, Z. Li, A. Ishteev, Q. Gu, W. Zhou, A. Zakhidov, W. Hu. Nanoimprinted perovskite metasurface for enhanced photoluminescence. Opt. Express, 2017, 25: A1162-A1171.

[77] S. D. Krasikov, A. A. Bogdanov, I. V. Iorsh. Nonlinear bound states in the continuum of a one-dimensional photonic crystal slab. Phys. Rev. B, 2018, 97: 224309.

[78] D. N. Maksimov, A. A. Bogdanov, E. N. Bulgakov. Optical bistability with bound states in the continuum in dielectric gratings. Phys. Rev. A, 2020, 102: 033511.

[79] L. Feng, R. El-Ganainy, L. Ge. Non-Hermitian photonics based on parity–time symmetry. Nat. Photonics, 2017, 11: 752-762.

Leran Lu, Quynh Le-Van, Lydie Ferrier, Emmanuel Drouard, Christian Seassal, Hai Son Nguyen. Engineering a light–matter strong coupling regime in perovskite-based plasmonic metasurface: quasi-bound state in the continuum and exceptional points[J]. Photonics Research, 2020, 8(12): 12000A91.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!