Photonics Research, 2021, 9 (2): 02000106, Published Online: Jan. 14, 2021   

Meta-objective with sub-micrometer resolution for microendoscopes Download: 672次

Author Affiliations
1 School of Physics & State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
2 e-mail: hext9@mail.sysu.edu.cn
3 e-mail: stszfl@mail.sysu.edu.cn
Copy Citation Text

Yan Liu, Qing-Yun Yu, Ze-Ming Chen, Hao-Yang Qiu, Rui Chen, Shao-Ji Jiang, Xin-Tao He, Fu-Li Zhao, Jian-Wen Dong. Meta-objective with sub-micrometer resolution for microendoscopes[J]. Photonics Research, 2021, 9(2): 02000106.

References

[1] R. A. Natalin, J. Landman. Where next for the endoscope?. Nat. Rev. Urol., 2009, 6: 622-628.

[2] D. Ramai, K. Zakhia, D. Etienne, M. Reddy. Philipp Bozzini (1773–1809): the earliest description of endoscopy. J. Med. Biography, 2018, 26: 137-141.

[3] M. Hughes, T. P. Chang, G.-Z. Yang. Fiber bundle endocytoscopy. Biomed. Opt. Express, 2013, 4: 2781-2794.

[4] M. Kim, J. Hong, J. Kim, H.-J. Shin. Fiber bundle-based integrated platform for wide-field fluorescence imaging and patterned optical stimulation for modulation of vasoconstriction in the deep brain of a living animal. Biomed. Opt. Express, 2017, 8: 2781-2795.

[5] P. Kim, E. Chung, H. Yamashita, K. E. Hung, A. Mizoguchi, R. Kucherlapati, D. Fukumura, R. K. Jain, S. H. Yun. In vivo wide-area cellular imaging by side-view endomicroscopy. Nat. Methods, 2010, 7: 303-305.

[6] Y.-H. Seo, K. Hwang, K.-H. Jeong. 1.65 mm diameter forward-viewing confocal endomicroscopic catheter using a flip-chip bonded electrothermal MEMS fiber scanner. Opt. Express, 2018, 26: 4780-4785.

[7] M. E. Bocarsly, W.-C. Jiang, C. Wang, J. T. Dudman, N. Ji, Y. Aponte. Minimally invasive microendoscopy system for in vivo functional imaging of deep nuclei in the mouse brain. Biomed. Opt. Express, 2015, 6: 4546-4556.

[8] D. Reismann, J. Stefanowski, R. Günther, A. Rakhymzhan, R. Matthys, R. Nützi, S. Zehentmeier, K. Schmidt-Bleek, G. Petkau, H.-D. Chang, S. Naundorf, Y. Winter, F. Melchers, G. Duda, A. E. Hauser, R. A. Niesner. Longitudinal intravital imaging of the femoral bone marrow reveals plasticity within marrow vasculature. Nat. Commun., 2017, 8: 2153.

[9] T. A. Murray, M. J. Levene. Singlet gradient index lens for deep in vivo multiphoton microscopy. J. Biomed. Opt., 2012, 17: 021106.

[10] J. H. Jennings, C. K. Kim, J. H. Marshel, M. Raffiee, L. Ye, S. Quirin, S. Pak, C. Ramakrishnan, K. Deisseroth. Interacting neural ensembles in orbitofrontal cortex for social and feeding behaviour. Nature, 2019, 565: 645-649.

[11] M. A. A. Neil, R. Juškaitis, T. Wilson. Method of obtaining optical sectioning by using structured light in a conventional microscope. Opt. Lett., 1997, 22: 1905-1907.

[12] T. S. Tkaczyk, M. Rahman, V. Mack, K. Sokolov, J. D. Rogers, R. Richards-Kortum, M. R. Descour. High resolution, molecular-specific, reflectance imaging in optically dense tissue phantoms with structured-illumination. Opt. Express, 2004, 12: 3745-3758.

[13] H. Neumann, M. Vieth, M. F. Neurath, F. S. Fuchs. In vivo diagnosis of small-cell lung cancer by endocytoscopy. J. Clin. Oncol., 2011, 29: e131-e132.

[14] T. Arao, K. Yanagihara, M. Takigahira, M. Takeda, F. Koizumi, Y. Shiratori, K. Nishio. ZD6474 inhibits tumor growth and intraperitoneal dissemination in a highly metastatic orthotopic gastric cancer model. Int. J. Cancer, 2006, 118: 483-489.

[15] S. Saha, A. Bardelli, P. Buckhaults, V. E. Velculescu, C. Rago, B. S. Croix, K. E. Romans, M. A. Choti, C. Lengauer, K. W. Kinzler, B. Vogelstein. A phosphatase associated with metastasis of colorectal cancer. Science, 2001, 294: 1343-1346.

[16] C. Liang, K.-B. Sung, R. R. Richards-Kortum, M. R. Descour. Design of a high-numerical-aperture miniature microscope objective for an endoscopic fiber confocal reflectance microscope. Appl. Opt., 2002, 41: 4603-4610.

[17] L. Yang, J. Wang, G. Tian, J. Yuan, Q. Liu, L. Fu. Five-lens, easy-to-implement miniature objective for a fluorescence confocal microendoscope. Opt. Express, 2016, 24: 473-484.

[18] J. Wang, H. Li, G. Tian, Y. Deng, Q. Liu, L. Fu. Near-infrared probe-based confocal microendoscope for deep-tissue imaging. Biomed. Opt. Express, 2018, 9: 5011-5025.

[19] J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, T. Possner. Endoscope-compatible confocal microscope using a gradient index-lens system. Opt. Commun., 2001, 188: 267-273.

[20] W. Göbel, J. N. D. Kerr, A. Nimmerjahn, F. Helmchen. Miniaturized two-photon microscope based on a flexible coherent fiber bundle and a gradient-index lens objective. Opt. Lett., 2004, 29: 2521-2523.

[21] Y. Chang, W. Lin, J. Cheng, S. C. Chen. Compact high-resolution endomicroscopy based on fiber bundles and image stitching. Opt. Lett., 2018, 43: 4168-4171.

[22] B. A. Flusberg, A. Nimmerjahn, E. D. Cocker, E. A. Mukamel, R. P. J. Barretto, T. H. Ko, L. D. Burns, J. C. Jung, M. J. Schnitzer. High-speed, miniaturized fluorescence microscopy in freely moving mice. Nat. Methods, 2008, 5: 935-938.

[23] M. J. Levene, D. A. Dombeck, K. A. Kasischke, R. P. Molloy, W. W. Webb. In vivo multiphoton microscopy of deep brain tissue. J. Neurophysiol., 2004, 91: 1908-1912.

[24] X. Li, C. Chudoba, T. Ko, C. Pitris, J. G. Fujimoto. Imaging needle for optical coherence tomography. Opt. Lett., 2000, 25: 1520-1522.

[25] S. M. Kamali, E. Arbabi, A. Arbabi, A. Faraon. A review of dielectric optical metasurfaces for wavefront control. Nanophotonics, 2018, 7: 1041-1068.

[26] M. L. Tseng, H.-H. Hsiao, C. H. Chu, M. K. Chen, G. Sun, A.-Q. Liu, D. P. Tsai. Metalenses: advances and applications. Adv. Opt. Mater., 2018, 6: 1800554.

[27] B. Li, W. Piyawattanametha, Z. Qiu. Metalens-based miniaturized optical systems. Micromachines, 2019, 10: 310.

[28] S. Sun, Q. He, J. Hao, S. Xiao, L. Zhou. Electromagnetic metasurfaces: physics and applications. Adv. Opt. Photon., 2019, 11: 380-479.

[29] X. Zou, G. Zheng, Q. Yuan, W. Zang, R. Chen, T. Li, L. Li, S. Wang, Z. Wang, S. Zhu. Imaging based on metalenses. PhotoniX, 2020, 1: 2.

[30] A. Arbabi, Y. Horie, M. Bagheri, A. Faraon. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat. Nanotechnol., 2015, 10: 937-943.

[31] A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, A. Faraon. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays. Nat. Commun., 2015, 6: 7069.

[32] X. Ni, S. Ishii, A. V. Kildishev, V. M. Shalaev. Ultra-thin, planar, Babinet-inverted plasmonic metalenses. Light Sci. Appl., 2013, 2: e72.

[33] M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, F. Capasso. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science, 2016, 352: 1190-1194.

[34] E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, A. Faraon. Controlling the sign of chromatic dispersion in diffractive optics with dielectric metasurfaces. Optica, 2017, 4: 625-632.

[35] S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. Hung Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, D. P. Tsai. Broadband achromatic optical metasurface devices. Nat. Commun., 2017, 8: 187.

[36] W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, F. Capasso. A broadband achromatic metalens for focusing and imaging in the visible. Nat. Nanotechnol., 2018, 13: 220-226.

[37] Z.-B. Fan, H.-Y. Qiu, H.-L. Zhang, X.-N. Pang, L.-D. Zhou, L. Liu, H. Ren, Q.-H. Wang, J.-W. Dong. A broadband achromatic metalens array for integral imaging in the visible. Light Sci. Appl., 2019, 8: 67.

[38] H. Pahlevaninezhad, M. Khorasaninejad, Y.-W. Huang, Z. Shi, L. P. Hariri, D. C. Adams, V. Ding, A. Zhu, C.-W. Qiu, F. Capasso, M. J. Suter. Nano-optic endoscope for high-resolution optical coherence tomography in vivo. Nat. Photonics, 2018, 12: 540-547.

[39] C. Chen, W. Song, J.-W. Chen, J.-H. Wang, Y. H. Chen, B. Xu, M.-K. Chen, H. Li, B. Fang, J. Chen, H. Y. Kuo, S. Wang, D. P. Tsai, S. Zhu, T. Li. Spectral tomographic imaging with aplanatic metalens. Light Sci. Appl., 2019, 8: 99.

[40] M. Y. Shalaginov, S. An, F. Yang, P. Su, D. Lyzwa, A. M. Agarwal, H. Zhang, J. Hu, T. Gu. Single-element diffraction-limited fisheye metalens. Nano Lett., 2020, 20: 7429-7437.

[41] A. Arbabi, E. Arbabi, S. M. Kamali, Y. Horie, S. Han, A. Faraon. Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations. Nat. Commun., 2016, 7: 13682.

[42] B. Groever, W. T. Chen, F. Capasso. Meta-lens doublet in the visible region. Nano Lett., 2017, 17: 4902-4907.

[43] A. Arbabi, E. Arbabi, Y. Horie, S. M. Kamali, A. Faraon. Planar metasurface retroreflector. Nat. Photonics, 2017, 11: 415-420.

[44] E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, M. Faraji-Dana, A. Faraon. MEMS-tunable dielectric metasurface lens. Nat. Commun., 2018, 9: 812.

[45] M. Faraji-Dana, E. Arbabi, A. Arbabi, S. M. Kamali, H. Kwon, A. Faraon. Compact folded metasurface spectrometer. Nat. Commun., 2018, 9: 4196.

[46] M. Faraji-Dana, E. Arbabi, H. Kwon, S. M. Kamali, A. Arbabi, J. G. Bartholomew, A. Faraon. Hyperspectral imager with folded metasurface optics. ACS Photon., 2019, 6: 2161-2167.

[47] H. Kwon, E. Arbabi, S. M. Kamali, M. Faraji-Dana, A. Faraon. Single-shot quantitative phase gradient microscopy using a system of multifunctional metasurfaces. Nat. Photonics, 2020, 14: 109-114.

[48] LiangR., “Endoscope Optics,” in Optical Design for Biomedical Imaging (SPIE, 2011), pp. 399410.

[49] Z.-B. Fan, Z.-K. Shao, M.-Y. Xie, X.-N. Pang, W.-S. Ruan, F.-L. Zhao, Y.-J. Chen, S.-Y. Yu, J.-W. Dong. Silicon nitride metalenses for close-to-one numerical aperture and wide-angle visible imaging. Phys. Rev. Appl., 2018, 10: 014005.

[50] V. Liu, S. Fan. S4: a free electromagnetic solver for layered periodic structures. Comput. Phys. Commun., 2012, 183: 2233-2244.

[51] S. Banerji, M. Meem, A. Majumder, F. G. Vasquez, B. Sensale-Rodriguez, R. Menon. Imaging with flat optics: metalenses or diffractive lenses?. Optica, 2019, 6: 805-810.

[52] J. Engelberg, U. Levy. The advantages of metalenses over diffractive lenses. Nat. Commun., 2020, 11: 1991.

[53] P. P. Iyer, R. A. DeCrescent, T. Lewi, N. Antonellis, J. A. Schuller. Uniform thermo-optic tunability of dielectric metalenses. Phys. Rev. Appl., 2018, 10: 044029.

Yan Liu, Qing-Yun Yu, Ze-Ming Chen, Hao-Yang Qiu, Rui Chen, Shao-Ji Jiang, Xin-Tao He, Fu-Li Zhao, Jian-Wen Dong. Meta-objective with sub-micrometer resolution for microendoscopes[J]. Photonics Research, 2021, 9(2): 02000106.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!