激光与光电子学进展, 2019, 56 (20): 202407, 网络出版: 2019-10-22   

局域表面等离激元纳米光学传感器的原理与进展 下载: 2517次特邀综述

Principles and Processes of Nanometric Localized-Surface-Plasmonic Optical Sensors
作者单位
南京大学现代工程与应用科学学院, 江苏 南京 210093
引用该论文

徐娅, 边捷, 张伟华. 局域表面等离激元纳米光学传感器的原理与进展[J]. 激光与光电子学进展, 2019, 56(20): 202407.

Ya Xu, Jie Bian, Weihua Zhang. Principles and Processes of Nanometric Localized-Surface-Plasmonic Optical Sensors[J]. Laser & Optoelectronics Progress, 2019, 56(20): 202407.

参考文献

[1] 聂永心.[\s]{1}现代生物仪器分析[M].[\s]{1}北京:[\s]{1}化学工业出版社,[\s]{1}2014:[\s]{1}1-[\s]{1}150.[\s]{1}

    Nie[\s]{1}YX.[\s]{1}Modern[\s]{1}biological[\s]{1}analysis[\s]{1}instruments[M].[\s]{1}Beijing:[\s]{1}Chemical[\s]{1}Industry[\s]{1}Press,[\s]{1}2014:[\s]{1}1-[\s]{1}150.[\s]{1}

[2] 张怡轩.[\s]{1}生物药物分析[M].[\s]{1}2版.[\s]{1}北京:[\s]{1}中国医药科技出版社,[\s]{1}2015:[\s]{1}1-[\s]{1}396.[\s]{1}

    Zhang[\s]{1}YX.[\s]{1}Biological[\s]{1}drug[\s]{1}analysis[M].[\s]{1}2nd[\s]{1}ed.[\s]{1}Beijing:[\s]{1}China[\s]{1}Medical[\s]{1}Science[\s]{1}Press,[\s]{1}2015:[\s]{1}1-[\s]{1}396.[\s]{1}

[3] McHale[\s]{1}JL.[\s]{1}Molecular[\s]{1}spectroscopy[M].[\s]{1}2nd[\s]{1}ed.[\s]{1}Boca[\s]{1}Raton:[\s]{1}CRC[\s]{1}Press,[\s]{1}2017:[\s]{1}1-[\s]{1}582.[\s]{1}

[4] Kole[\s]{1}y[\s]{1}ski[\s]{1}A,[\s]{1}KrólM.[\s]{1}Molecular[\s]{1}spectroscopy-experiment[\s]{1}and[\s]{1}theory[M].[\s]{1}Switzerland:[\s]{1}Springer[\s]{1}International[\s]{1}Publishing,[\s]{1}2019,[\s]{1}26:[\s]{1}XI,[\s]{1}524.[\s]{1}

[5] Willets K A, van Duyne R P. Localized surface plasmon resonance spectroscopy and sensing[J]. Annual Review of Physical Chemistry, 2007, 58(1): 267-297.

[6] Lal S, Link S, Halas N J. Nano-optics from sensing to waveguiding[J]. Nature Photonics, 2007, 1(11): 641-648.

[7] Maier[\s]{1}SA.[\s]{1}Plasmonics:[\s]{1}fundamentals[\s]{1}and[\s]{1}applications[M].[\s]{1}NY:[\s]{1}Springer,[\s]{1}2007:[\s]{1}1-[\s]{1}347.[\s]{1}

[8] NovotnyL,[\s]{1}HechtB.[\s]{1}Principles[\s]{1}of[\s]{1}nano-optics[M].[\s]{1}UK:[\s]{1}Cambridge[\s]{1}University[\s]{1}Press,[\s]{1}2012:[\s]{1}273-[\s]{1}276.[\s]{1}

[9] KawataS.[\s]{1}Near-field[\s]{1}optics[\s]{1}and[\s]{1}surface[\s]{1}plasmon[\s]{1}polaritons[M].[\s]{1}Berlin,[\s]{1}Heidelberg:[\s]{1}Springer,[\s]{1}2001:[\s]{1}1-[\s]{1}439.[\s]{1}

[10] Bohren[\s]{1}CF,[\s]{1}Huffman[\s]{1}DR.[\s]{1}Absorption[\s]{1}and[\s]{1}scattering[\s]{1}of[\s]{1}light[\s]{1}by[\s]{1}small[\s]{1}particles[M].[\s]{1}USA:[\s]{1}John[\s]{1}Wiley[\s]{1}&[\s]{1}Sons,[\s]{1}1998:[\s]{1}100-[\s]{1}101.[\s]{1}

[11] KreibigU,[\s]{1}VollmerM.[\s]{1}Optical[\s]{1}properties[\s]{1}of[\s]{1}metal[\s]{1}clusters[M].[\s]{1}Berlin,[\s]{1}Heidelberg:[\s]{1}Springer,[\s]{1}1995:[\s]{1}1-[\s]{1}489.[\s]{1}

[12] RaetherH.[\s]{1}Surface[\s]{1}plasmons[\s]{1}on[\s]{1}smooth[\s]{1}and[\s]{1}rough[\s]{1}surfaces[\s]{1}and[\s]{1}on[\s]{1}gratings[M].[\s]{1}Berlin,[\s]{1}Heidelberg:[\s]{1}Springer,[\s]{1}1988:[\s]{1}1-[\s]{1}583.[\s]{1}

[13] Abdulhalim I, Zourob M, Lakhtakia A. Surface plasmon resonance for biosensing: a mini-review[J]. Electromagnetics, 2008, 28(3): 214-242.

[14] Hoa X D, Kirk A G, Tabrizian M. Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress[J]. Biosensors and Bioelectronics, 2007, 23(2): 151-160.

[15] Nguyen H, Park J, Kang S, et al. Surface plasmon resonance: a versatile technique for biosensor applications[J]. Sensors, 2015, 15(5): 10481-10510.

[16] Wijaya E, Lenaerts C, Maricot S, et al. Surface plasmon resonance-based biosensors: from the development of different SPR structures to novel surface functionalization strategies[J]. Current Opinion in Solid State and Materials Science, 2011, 15(5): 208-224.

[17] Kneipp K, Wang Y, Kneipp H, et al. Single molecule detection using surface-enhanced Raman scattering (SERS)[J]. Physical Review Letters, 1997, 78(9): 1667-1670.

[18] Nie S. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering[J]. Science, 1997, 275(5303): 1102-1106.

[19] Englebienne P. Use of colloidal gold surface plasmon resonance peak shift to infer affinity constants from the interactions between protein antigens and antibodies specific for single or multiple epitopes[J]. The Analyst, 1998, 123(7): 1599-1603.

[20] Mirkin C A, Letsinger R L, Mucic R C, et al. A DNA-based method for rationally assembling nanoparticles into macroscopic materials[J]. Nature, 1996, 382(6592): 607-609.

[21] Mulvaney P. Surface plasmon spectroscopy of nanosized metal particles[J]. Langmuir, 1996, 12(3): 788-800.

[22] Ament I, Prasad J, Henkel A, et al. Single unlabeled protein detection on individual plasmonic nanoparticles[J]. Nano Letters, 2012, 12(2): 1092-1095.

[23] Pang Y J, Gordon R. Optical trapping of a single protein[J]. Nano Letters, 2012, 12(1): 402-406.

[24] Zhou L, Tan Y L, Wang J Y, et al. 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination[J]. Nature Photonics, 2016, 10(6): 393-398.

[25] Huang X H, Jain P K. El-Sayed I H, et al. Plasmonic photothermal therapy (PPTT) using gold nanoparticles[J]. Lasers in Medical Science, 2008, 23(3): 217-228.

[26] Graham D, Moskovits M, Tian Z Q. SERS - facts, figures and the future[J]. Chemical Society Reviews, 2017, 46(13): 3864-3865.

[27] Zong C, Xu M X, Xu L J, et al. Surface-enhanced Raman spectroscopy for bioanalysis: reliability and challenges[J]. Chemical Reviews, 2018, 118(10): 4946-4980.

[28] Mayer K M, Hafner J H. Localized surface plasmon resonance sensors[J]. Chemical Reviews, 2011, 111(6): 3828-3857.

[29] Gu Y, Chen L L, Zhang H X, et al. Resonance capacity of surface plasmon on subwavelength metallic structures[J]. EPL (Europhysics Letters), 2008, 83(2): 27004.

[30] Wang F, Shen Y R. General properties of local plasmons in metal nanostructures[J]. Physical Review Letters, 2006, 97(20): 206806.

[31] Zhang W H, Gallinet B. Martin O J F. Symmetry and selection rules for localized surface plasmon resonances in nanostructures[J]. Physical Review B, 2010, 81(23): 233407.

[32] 黄昆,[\s]{1}韩汝琦.[\s]{1}固体物理学[M].[\s]{1}北京:[\s]{1}高等教育出版社,[\s]{1}1998:[\s]{1}1-[\s]{1}469.[\s]{1}

    HuangK,[\s]{1}Han[\s]{1}RQ.[\s]{1}Solid[\s]{1}state[\s]{1}physics[M].[\s]{1}Beijing:[\s]{1}Higher[\s]{1}Education[\s]{1}Press,[\s]{1}1998:[\s]{1}1-[\s]{1}469.[\s]{1}

[33] Zhang W H. A general theory for plasmonic nanosensor[J]. Proceedings of SPIE, 2015, 9620: 96200J.

[34] Mühlschlegel P, Eisler H J. Martin O J F, et al. Resonant optical antennas[J]. Science, 2005, 308(5728): 1607-1609.

[35] Novotny L. Effective wavelength scaling for optical antennas[J]. Physical Review Letters, 2007, 98(26): 266802.

[36] Bharadwaj P, Deutsch B, Novotny L. Optical antennas[J]. Advances in Optics and Photonics, 2009, 1(3): 438-483.

[37] Milligan[\s]{1}TA.[\s]{1}Modern[\s]{1}antenna[\s]{1}design[M].[\s]{1}USA:[\s]{1}John[\s]{1}Wiley[\s]{1}&[\s]{1}Sons,[\s]{1}2005:[\s]{1}1-[\s]{1}293.[\s]{1}

[38] Le[\s]{1}Ru[\s]{1}EC,[\s]{1}Etchegoin[\s]{1}PG.[\s]{1}Surface[\s]{1}enhanced[\s]{1}Raman[\s]{1}spectroscopy[\s]{1}and[\s]{1}related[\s]{1}plasmonic[\s]{1}effects[M].[\s]{1}UK:[\s]{1}Elsevier,[\s]{1}2009:[\s]{1}1-[\s]{1}437.[\s]{1}

[39] Zhang W H. Martin O J F. Optical trapping and sensing with plasmonic dipole antennas[J]. Proceedings of SPIE, 2010, 7757: 775712.

[40] Chikkaraddy R, de Nijs B, Benz F, et al. . Single-molecule strong coupling at room temperature in plasmonic nanocavities[J]. Nature, 2016, 535(7610): 127-130.

[41] Li W D, Ding F, Hu J, et al. Three-dimensional cavity nanoantenna coupled plasmonic nanodots for ultrahigh and uniform surface-enhanced Raman scattering over large area[J]. Optics Express, 2011, 19(5): 3925-3936.

[42] Seok T J, Jamshidi A, Kim M, et al. Radiation engineering of optical antennas for maximum field enhancement[J]. Nano Letters, 2011, 11(7): 2606-2610.

[43] Leng H X, Szychowski B, Daniel M C, et al. Strong coupling and induced transparency at room temperature with single quantum dots and gap plasmons[J]. Nature Communications, 2018, 9: 4012.

[44] Juan M L, Gordon R, Pang Y J, et al. Self-induced back-action optical trapping of dielectric nanoparticles[J]. Nature Physics, 2009, 5(12): 915-919.

[45] Zhang R, Zhang Y, Dong Z C, et al. Chemical mapping of a single molecule by plasmon-enhanced Raman scattering[J]. Nature, 2013, 498(7452): 82-86.

[46] Zhang C, Chen B Q, Li Z Y. Optical origin of subnanometer resolution in tip-enhanced Raman mapping[J]. The Journal of Physical Chemistry C, 2015, 119(21): 11858-11871.

[47] Caldwell J D, Glembocki O, Bezares F J, et al. Plasmonic nanopillar arrays for large-area, high-enhancement surface-enhanced Raman scattering sensors[J]. ACS Nano, 2011, 5(5): 4046-4055.

[48] Chou[\s]{1}SY,[\s]{1}Zhou[\s]{1}L[\s]{1}C.[\s]{1}Structures[\s]{1}for[\s]{1}enhancement[\s]{1}of[\s]{1}local[\s]{1}electric[\s]{1}field,[\s]{1}lightabsorption,[\s]{1}lightradiation,[\s]{1}materialdetection[\s]{1}and[\s]{1}methods[\s]{1}formaking[\s]{1}and[\s]{1}using[\s]{1}of[\s]{1}the[\s]{1}same:[\s]{1}US20140154668[P/OL].2014-06-05[2019-08-01].[\s]{1}https://patents.glgoo.top/patent/US20140154668A1/en.

[49] Rodrigo D, Limaj O, Janner D, et al. Mid-infrared plasmonic biosensing with graphene[J]. Science, 2015, 349(6244): 165-168.

[50] Zhu J J, Meng X, Zhang C, et al. Tailoring a nanostructured plasmonic absorber for high efficiency surface-assisted laser desorption/ionization[J]. Physical Chemistry Chemical Physics, 2018, 20(5): 3424-3429.

[51] Fleischmann M, Hendra P J. McQuillan A J. Raman spectra of pyridine adsorbed at a silver electrode[J]. Chemical Physics Letters, 1974, 26(2): 163-166.

[52] Jeanmaire D L, van Duyne R P. Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode[J]. Journal of Electroanalytical Chemistry, 1977, 84(1): 1-20.

[53] Moskovits M. Surface roughness and the enhanced intensity of Raman scattering by molecules adsorbed on metals[J]. The Journal of Chemical Physics, 1978, 69(9): 4159-4161.

[54] Panneerselvam R, Liu G K, Wang Y H, et al. Surface-enhanced Raman spectroscopy: bottlenecks and future directions[J]. Chemical Communications, 2018, 54(1): 10-25.

[55] Zhang W H, Cui X D, Yeo B S, et al. Nanoscale roughness on metal surfaces can increase tip-enhanced Raman scattering by an order of magnitude[J]. Nano Letters, 2007, 7(5): 1401-1405.

[56] Zhang W H, Schmid T, Yeo B S, et al. Near-field heating, annealing, and signal loss in tip-enhanced Raman spectroscopy[J]. The Journal of Physical Chemistry C, 2008, 112(6): 2104-2108.

[57] Ciraci C, Hill R T, Mock J J, et al. Probing the ultimate limits of plasmonic enhancement[J]. Science, 2012, 337(6098): 1072-1074.

[58] Li J F, Huang Y F, Ding Y, et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy[J]. Nature, 2010, 464(7287): 392-395.

[59] Stuart D A, Yuen J M, Shah N, et al. In vivo glucose measurement by surface-enhanced Raman spectroscopy[J]. Analytical Chemistry, 2006, 78(20): 7211-7215.

[60] Hsu P H, Chiang H K. Surface-enhanced Raman spectroscopy for quantitative measurement of lactic acid at physiological concentration in human serum[J]. Journal of Raman Spectroscopy, 2010, 41(12): 1610-1614.

[61] Ma K, Yuen J M, Shah N C, et al. In vivo, transcutaneous glucose sensing using surface-enhanced spatially offset Raman spectroscopy: multiple rats, improved hypoglycemic accuracy, low incident power, and continuous monitoring for greater than 17 days[J]. Analytical Chemistry, 2011, 83(23): 9146-9152.

[62] Hu P, Zheng X S, Zong C, et al. Drop-coating deposition and surface-enhanced Raman spectroscopies (DCDRS and SERS) provide complementary information of whole human tears[J]. Journal of Raman Spectroscopy, 2014, 45(7): 565-573.

[63] Shen W, Lin X, Jiang C Y, et al. Reliable quantitative SERS analysis facilitated by core-shell nanoparticles with embedded internal standards[J]. Angewandte Chemie International Edition, 2015, 54(25): 7308-7312.

[64] Neubrech F, Pucci A, Cornelius T W, et al. Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection[J]. Physical Review Letters, 2008, 101(15): 157403.

[65] Brown L V, Zhao K, King N, et al. Surface-enhanced infrared absorption using individual cross antennas tailored to chemical moieties[J]. Journal of the American Chemical Society, 2013, 135(9): 3688-3695.

[66] Wang C, Zhang Q, Song Y, et al. Plasmonic bar-coupled dots-on-pillar cavity antenna with dual resonances for infrared absorption and sensing: performance and nanoimprint fabrication[J]. ACS Nano, 2014, 8(3): 2618-2624.

[67] Hu H, Yang X X, Zhai F, et al. Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons[J]. Nature Communications, 2016, 7: 12334.

[68] Zhang W H, Ding F. 24(35): OP236-OP241[J]. Chou S Y. Large enhancement of upconversion luminescence of NaYF4∶Yb 3+/Er 3+ nanocrystal by 3D plasmonic nano-antennas. Advanced Materials, 2012.

[69] Zhang W H, Ding F, Li W D, et al. Giant and uniform fluorescence enhancement over large areas using plasmonic nanodots in 3D resonant cavity nanoantenna by nanoimprinting[J]. Nanotechnology, 2012, 23(22): 225301.

[70] Zhou L C, Ding F, Chen H, et al. Enhancement of immunoassay’s fluorescence and detection sensitivity using three-dimensional plasmonic nano-antenna-dots array[J]. Analytical Chemistry, 2012, 84(10): 4489-4495.

[71] Zang F H, Su Z J, Zhou L C, et al. Ultrasensitive ebola virus antigen sensing via 3D nanoantenna arrays[J]. Advanced Materials, 2019, 31(30): 1902331.

[72] Al Balushi A A, Gordon R. A label-free untethered approach to single-molecule protein binding kinetics[J]. Nano Letters, 2014, 14(10): 5787-5791.

[73] Yoo D, Gurunatha K L, Choi H K, et al. Low-power optical trapping of nanoparticles and proteins with resonant coaxial nanoaperture using 10 nm gap[J]. Nano Letters, 2018, 18(6): 3637-3642.

[74] Zijlstra P. Paulo P M R, Orrit M. Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod[J]. Nature Nanotechnology, 2012, 7(6): 379-382.

[75] Dantham V R, Holler S, Barbre C, et al. Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity[J]. Nano Letters, 2013, 13(7): 3347-3351.

[76] Bozzola A. Perotto S, de Angelis F. Hybrid plasmonic-photonic whispering gallery mode resonators for sensing: a critical review[J]. The Analyst, 2017, 142(6): 883-898.

[77] Liang F, Guo Y Z, Hou S C, et al. Photonic-plasmonic hybrid single-molecule nanosensor measures the effect of fluorescent labels on DNA-protein dynamics[J]. Science Advances, 2017, 3(5): e1602991.

[78] Al Balushi A A, Kotnala A, Wheaton S, et al. . Label-free free-solution nanoaperture optical tweezers for single molecule protein studies[J]. The Analyst, 2015, 140(14): 4760-4778.

[79] Rosman C, Pierrat S, Henkel A, et al. A new approach to assess gold nanoparticle uptake by mammalian cells: combining optical dark-field and transmission electron microscopy[J]. Small, 2012, 8(23): 3683-3690.

[80] Ye W X, Celiksoy S, Jakab A, et al. Plasmonic nanosensors reveal a height dependence of MinDE protein oscillations on membrane features[J]. Journal of the American Chemical Society, 2018, 140(51): 17901-17906.

[81] Karas M, Hillenkamp F. Laser desorption ionization of proteins with molecular masses exceeding 10, 000 daltons[J]. Analytical Chemistry, 1988, 60(20): 2299-2301.

[82] Karas M, Krueger R. Ion formation in MALDI: the cluster ionization mechanism[J]. ChemInform, 2003, 34(18): 427-439.

[83] Chiang C K, Chen W T, Chang H T. ChemInform abstract: nanoparticle-based mass spectrometry for the analysis of biomolecules[J]. ChemInform, 2011, 42(3): 1269-1281.

[84] Sekuła J, Nizioł J, Rode W, et al. Gold nanoparticle-enhanced target (AuNPET) as universal solution for laser desorption/ionization mass spectrometry analysis and imaging of low molecular weight compounds[J]. Analytica Chimica Acta, 2015, 875: 61-72.

[85] Hinman S S, Chen C Y, Duan J C, et al. Calcinated gold nanoparticle arrays for on-chip, multiplexed and matrix-free mass spectrometric analysis of peptides and small molecules[J]. Nanoscale, 2016, 8(3): 1665-1675.

[86] Wang X H, Chang T W, Lin G H, et al. Self-referenced smartphone-based nanoplasmonic imaging platform for colorimetric biochemical sensing[J]. Analytical Chemistry, 2017, 89(1): 611-615.

[87] Bian J, Xing X, Zhou S, et al. Patterned plasmonic gradient for high-precision biosensing using a smartphone reader[J]. Nanoscale, 2019, 11(26): 12471-12476.

[88] Zarei M. Advances in point-of-care technologies for molecular diagnostics[J]. Biosensors and Bioelectronics, 2017, 98: 494-506.

[89] Quesada-González D, Merkoçi A. Mobile phone-based biosensing: an emerging “diagnostic and communication” technology[J]. Biosensors and Bioelectronics, 2017, 92: 549-562.

[90] Gao X F, Wu N Q. Smartphone-based sensors[J]. The Electrochemical Society Interface, 2016, 25(4): 79-81.

[91] Preechaburana P, Gonzalez M C, Suska A, et al. Surface plasmon resonance chemical sensing on cell phones[J]. Angewandte Chemie International Edition, 2012, 51(46): 11585-11588.

徐娅, 边捷, 张伟华. 局域表面等离激元纳米光学传感器的原理与进展[J]. 激光与光电子学进展, 2019, 56(20): 202407. Ya Xu, Jie Bian, Weihua Zhang. Principles and Processes of Nanometric Localized-Surface-Plasmonic Optical Sensors[J]. Laser & Optoelectronics Progress, 2019, 56(20): 202407.

本文已被 11 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!