激光与光电子学进展, 2019, 56 (17): 170607, 网络出版: 2019-09-05   

高功率铒镱共掺光纤激光器研究进展 下载: 1761次

Research Progress of High-Power Erbium-Ytterbium Codoped Fiber Laser
作者单位
华中科技大学武汉光电国家研究中心, 湖北 武汉 430074
引用该论文

程永师, 陈瑰, 李进延. 高功率铒镱共掺光纤激光器研究进展[J]. 激光与光电子学进展, 2019, 56(17): 170607.

Yongshi Cheng, Gui Chen, Jinyan Li. Research Progress of High-Power Erbium-Ytterbium Codoped Fiber Laser[J]. Laser & Optoelectronics Progress, 2019, 56(17): 170607.

参考文献

[1] Richardson D J, Nilsson J, Clarkson W A. High power fiber lasers: current status and future perspectives [Invited][J]. Journal of the Optical Society of America B, 2010, 27(11): B63-B92.

[2] 陈晓龙, 楼风光, 何宇, 等. 高效率全国产化10 kW光纤激光器[J]. 光学学报, 2019, 39(3): 0336001.

    Chen X L, Lou F G, He Y, et al. Home-made 10 kW fiber laser with high efficiency[J]. Acta Optica Sinica, 2019, 39(3): 0336001.

[3] Philippov V N, Sahu J K, Codemard C A, et al. All-fiber 1.15-mJ pulsed eye-safe optical source[J]. Proceedings of SPIE, 2004, 5335: 1-7.

[4] Kehayas E, Stampoulidis L, Henderson P, et al. The European project Hippo high-power photonics for satellite laser communications and on-board optical processing[J]. Proceedings of SPIE, 2014, 10563: 105635C.

[5] Dolfi-Bouteyre A, Canat G, Valla M, et al. Pulsed 1.5-μm LIDAR for axial aircraft wake vortex detection based on high-brightness large-core fiber amplifier[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(2): 441-450.

[6] Bloom S, Korevaar E, Schuster J, et al. Understanding the performance of free-space optics[Invited][J]. Journal of Optical Networking, 2003, 2(6): 178-200.

[7] Supradeepa V R, Nicholson J W. Power scaling of high-efficiency 1.5 μm cascaded Raman fiber lasers[J]. Optics Letters, 2013, 38(14): 2538-2541.

[8] 冯衍, 姜华卫, 张磊. 高功率拉曼光纤激光器技术研究进展[J]. 中国激光, 2017, 44(2): 0201005.

    Feng Y, Jiang H W, Zhang L. Advances in high power Raman fiber laser technology[J]. Chinese Journal of Lasers, 2017, 44(2): 0201005.

[9] Zhang J, Fromzel V, Dubinskii M. Resonantly cladding-pumped Yb-free Er-doped LMA fiber laser with record high power and efficiency[J]. Optics Express, 2011, 19(6): 5574-5578.

[10] Kotov L V, Likhachev M E, Bubnov M M, et al. Yb-free Er-doped all-fiber amplifier cladding-pumped at 976 nm with output power in excess of 100 W[J]. Proceedings of SPIE, 2014, 8961: 89610X.

[11] Jebali MA, Maran JN, LaRochelle S, et al. A 103 W high efficiency in-band cladding-pumped 1593 nm all-fiber erbium-doped fiber laser[C]∥Conference on Lasers and Electro-Optics 2012, May 6-11, 2012, San Jose, California, United States. Washington, D.C.: OSA, 2012: JTh1I. 3.

[12] Lin H Q, Feng Y J, Feng Y T, et al. 656 W Er-doped, Yb-free large-core fiber laser[J]. Optics Letters, 2018, 43(13): 3080-3083.

[13] Jeong Y, Yoo S, Codemard C A, et al. Erbium∶ytterbium codoped large-core fiber laser with 297-W continuous-wave output power[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(3): 573-579.

[14] Philippov V, Codemard C, Jeong Y, et al. High-energy in-fiber pulse amplification for coherent lidar applications[J]. Optics Letters, 2004, 29(22): 2590-2592.

[15] de Varona O, Fittkau W, Booker P, et al. . Single-frequency fiber amplifier at 1.5 μm with 100 W in the linearly-polarized TEM00 mode for next-generation gravitational wave detectors[J]. Optics Express, 2017, 25(21): 24880-24892.

[16] Townsend J E, Poole S B, Payne D N. Solution-doping technique for fabrication of rare-earth-doped optical fibres[J]. Electronics Letters, 1987, 23(7): 329-331.

[17] Carter A LG, Poole SB, Sceats MG. A flash-condensation technique for the fabrication of high phosphorous content rare-earth doped fibres[C]∥Optical Amplifiers and Their Applications, June 24, 1992, Sante Fe, New Mexico, United States. Washington, D.C.: OSA, 1992: PD6.

[18] Vienne G G, Brocklesby W S, Brown R S, et al. Role of aluminum in ytterbium-erbium codoped phosphoaluminosilicate optical fibers[J]. Optical Fiber Technology, 1996, 2(4): 387-393.

[19] 刘学军, 李进延, 蒋作文, 等. Er 3+/Yb 3+共掺光纤的研制与光谱分析 [J]. 光通信研究, 2004(5): 52-54.

    Liu X J, Li J Y, Jiang Z W, et al. Manufacture of Er 3+/Yb 3+ co-doped fiber and its spectrum analysis [J]. Study on Optical Communications, 2004(5): 52-54.

[20] 衣永青, 周述文, 宁鼎, 等. 铒镱共掺双包层光纤的研究[J]. 激光与红外, 2007, 37(3): 259-261.

    Yi Y Q, Zhou S W, Ning D, et al. Study of the ytterbium-erbium co-doped double-clad optical fibers[J]. Laser & Infrared, 2007, 37(3): 259-261.

[21] 张泽学, 蒋作文, 彭景刚, 等. 铒镱共掺磷硅酸盐光纤的制备及其激光性能研究[J]. 无机材料学报, 2012, 27(5): 485-488.

    Zhang Z X, Jiang Z W, Peng J G, et al. Fabrication and characterization of Er 3+∶Yb 3+ co-doped phosphosilicate fibers [J]. Journal of Inorganic Materials, 2012, 27(5): 485-488.

[22] Steinke M, Croteau A, Paré C, et al. Co-seeded Er 3+∶Yb 3+ single frequency fiber amplifier with 60 W output power and over 90% TEM00 content [J]. Optics Express, 2014, 22(14): 16722-16730.

[23] Khudyakov M M, Lobanov A S, Lipatov D S, et al. Single-mode large-mode-area Er-Yb fibers with core based on phosphorosilicate glass highly doped with fluorine[J]. Laser Physics Letters, 2019, 16(2): 025105.

[24] SnitzerE, PoH, HakimiF, et al. Erbium fiber laser amplifier at 1.55 μm with pump at 1.49 μm and Yb sensitized Er oscillator[C]∥Optical Fiber Communication, January 25, 1988, New Orleans, Louisiana,United States. Washington, D.C.: OSA, 1988: PD2.

[25] Minelly J D, Barnes W L, Laming R I, et al. Diode-array pumping of Er 3+/Yb 3+ co-doped fiber lasers and amplifiers [J]. IEEE Photonics Technology Letters, 1993, 5(3): 301-303.

[26] Sahu J K, Jeong Y, Richardson D J, et al. A 103 W erbium-ytterbium co-doped large-core fiber laser[J]. Optics Communications, 2003, 227(1/2/3): 159-163.

[27] Jebali M A, Maran J N. LaRochelle S. 264 W output power at 1585 nm in Er-Yb codoped fiber laser using in-band pumping[J]. Optics Letters, 2014, 39(13): 3974-3977.

[28] 占生宝, 赵尚弘, 董淑福, 等. 双包层Er 3+/Yb 3+共掺光纤激光器的实验研究 [J]. 激光技术, 2003, 27(6): 606-608.

    Zhan S B, Zhao S H, Dong S F, et al. The experimental study of the Er 3+/Yb 3+ co-doped double clad fiber laser [J]. Laser Technology, 2003, 27(6): 606-608.

[29] 陈文婷. 高功率铒镱共掺光纤激光和超荧光输出的理论和实验研究[D]. 上海: 复旦大学, 2013: 15- 19.

    Chen WT. Theoretical and experimental study on high power erbium-ytterbium co-doped fiber laser and superfluorescence output[D]. Shanghai: Fudan University, 2013: 15- 19.

[30] Jeong Y, Sahu J K, Richardson D J, et al. Seeded erbium/ytterbium codoped fibre amplifier source with 87 W of single-frequency output power[J]. Electronics Letters, 2003, 39(24): 1717-1719.

[31] Creeden D, Pretorius H, Limongelli J, et al. Single frequency 1560 nm Er∶Yb fiber amplifier with 207 W output power and 50.5% slope efficiency[J]. Proceedings of SPIE, 2016, 9728: 97282L.

[32] Alegria C, Jeong Y, Codemard C, et al. 83-W single-frequency narrow-linewidth MOPA using large-core erbium-ytterbium co-doped fiber[J]. IEEE Photonics Technology Letters, 2004, 16(8): 1825-1827.

[33] Jeong Y, Sahu J K. Soh D B S, et al. High-power tunable single-frequency single-mode erbium∶ytterbium codoped large-core fiber master-oscillator power amplifier source[J]. Optics Letters, 2005, 30(22): 2997-2999.

[34] Spiegelberg C, Geng J H, Hu Y D, et al. Low-noise narrow-linewidth fiber laser at 1550 nm (June 2003)[J]. Journal of Lightwave Technology, 2004, 22(1): 57-62.

[35] Hu Y, Jiang S, Luo T, et al. Performance of high-concentration Er 3+-Yb 3+ codoped phosphate fiber amplifiers [J]. IEEE Photonics Technology Letters, 2001, 13(7): 657-659.

[36] Xu S H, Yang Z M, Feng Z M, et al. Efficient fibre amplifiers based on a highly Er 3+/Yb 3+ codoped phosphate glass-fibre [J]. Chinese Physics Letters, 2009, 26(4): 047806.

[37] Xu S H, Yang Z M, Liu T, et al. An efficient compact 300 mW narrow-linewidth single frequency fiber laser at 1.5 μm[J]. Optics Express, 2010, 18(2): 1249-1254.

[38] Yang C S, Xu S H, Mo S P, et al. 10.9 W kHz-linewidth one-stage all-fiber linearly-polarized MOPA laser at 1560 nm[J]. Optics Express, 2013, 21(10): 12546-12551.

[39] Bai X L, Sheng Q, Zhang H W, et al. High-power all-fiber single-frequency erbium-ytterbium co-doped fiber master oscillator power amplifier[J]. IEEE Photonics Journal, 2015, 7(6): 7103106.

[40] Tang X Y, Han Q, Song H L, et al. Numerical investigation of the thermal effect on Yb-cavity-copumped Er/Yb codoped fiber amplifiers[J]. Applied Optics, 2018, 57(7): 1541-1547.

[41] 杜雪原, 粟荣涛, 王小林, 等. 工作温度对光纤激光器输出特性的影响研究[J]. 中国激光, 2015, 42(s1): s102004.

    Du X Y, Su R T, Wang X L, et al. Research on fiber laser performance working at different temperatures[J]. Chinese Journal of Lasers, 2015, 42(s1): s102004.

[42] Yang C S, Guan X C, Zhao Q L, et al. High-power and near-shot-noise-limited intensity noise all-fiber single-frequency 1.5 μm MOPA laser[J]. Optics Express, 2017, 25(12): 13324-13331.

[43] 胡志涛, 何兵, 周军, 等. 高功率光纤激光器热效应的研究进展[J]. 激光与光电子学进展, 2016, 53(8): 080002.

    Hu Z T, He B, Zhou J, et al. Research progress in thermal effect of high power fiber lasers[J]. Laser & Optoelectronics Progress, 2016, 53(8): 080002.

[44] 郑也, 李磐, 朱占达, 等. 高功率窄线宽光纤激光器研究进展[J]. 激光与光电子学进展, 2018, 55(8): 080002.

    Zheng Y, Li P, Zhu Z D, et al. Progress in high-power narrow-linewidth fiber lasers[J]. Laser & Optoelectronics Progress, 2018, 55(8): 080002.

[45] MermelsteinM, Yablon A D. Suppression of stimulated Brillouin scattering ( SBS) in high power fiber amplifier: US7733561[P/OL].2007-01-25[2019-06-12]. http:∥www.google.co.in/patents/US7733561.

[46] Kuhn V, Weßels P, Neumann J, et al. Stabilization and power scaling of cladding pumped Er∶Yb-codoped fiber amplifier via auxiliary signal at 1064 nm[J]. Optics Express, 2009, 17(20): 18304-18311.

[47] Robin T, Gotter T, Barnini A, et al. Evidence of photo-darkening in co-doped erbium-ytterbium double-clad fibers operated at high-output power[J]. Proceedings of SPIE, 2018, 10528: 1052815.

[48] ShirakawaA, SuzukiH, TanishoM, et al. Yb-ASE-free Er amplification in short-wavelength filtered Er∶Yb photonic-crystal fiber[C]∥Optical Fiber Communication Conference 2008, February 24-28, 2008, San Diego, California, United States. Washington, D.C.: Optical Society of America, 2008: OthN2.

[49] Ouyang D Q, Guo C Y, Ruan S C, et al. Yb band parasitic lasing suppression in Er/Yb-co-doped pulsed fiber amplifier based on all-solid photonic bandgap fiber[J]. Applied Physics B, 2014, 114(4): 585-590.

[50] Limongelli J R, Setzler S D, Creeden D. Experimental and numerical analysis of high power Er∶Yb co-doped fiber amplifiers[J]. Proceedings of SPIE, 2017, 10083: 100831O.

[51] Booker P, Caspary R, Neumann J, et al. Pump wavelength dependence of ASE and SBS in single-frequency EYDFAs[J]. Optics Letters, 2018, 43(19): 4647-4650.

[52] Han Q, Ning J P, Sheng Z X. Numerical investigation of the ASE and power scaling of cladding-pumped Er-Yb codoped fiber amplifiers[J]. IEEE Journal of Quantum Electronics, 2010, 46(11): 1535-1541.

[53] Sobon G, Kaczmarek P, Antonczak A, et al. Controlling the 1 μm spontaneous emission in Er/Yb co-doped fiber amplifiers[J]. Optics Express, 2011, 19(20): 19104-19113.

[54] Sobon G, Sliwinska D. AbramskiK M, et al. 10 W single-mode Er/Yb co-doped all-fiber amplifier with suppressed Yb-ASE[J]. Laser Physics Letters, 2014, 11(2): 025103.

[55] Han Q, Yao Y Z, Chen Y F, et al. Highly efficient Er/Yb-codoped fiber amplifier with an Yb-band fiber Bragg grating[J]. Optics Letters, 2015, 40(11): 2634-2636.

[56] Han Q, Yan W C, Yao Y Z, et al. Optimal design of Er/Yb co-doped fiber amplifiers with an Yb-band fiber Bragg grating[J]. Photonics Research, 2016, 4(2): 53-56.

[57] Zhao X R, Han Q, Wang D, et al. Optimal design of high-power cascade co-pumping Er/Yb-codoped fiber lasers[J]. Optics Letters, 2019, 44(5): 1100-1103.

[58] Han Q, Yao Y Z, Tang X Y, et al. Highly efficient Er-Yb codoped double-clad fiber amplifier with an Yb-band resonant cavity[J]. Laser Physics Letters, 2017, 14(2): 025105.

程永师, 陈瑰, 李进延. 高功率铒镱共掺光纤激光器研究进展[J]. 激光与光电子学进展, 2019, 56(17): 170607. Yongshi Cheng, Gui Chen, Jinyan Li. Research Progress of High-Power Erbium-Ytterbium Codoped Fiber Laser[J]. Laser & Optoelectronics Progress, 2019, 56(17): 170607.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!