光学学报, 2021, 41 (1): 0102002, 网络出版: 2021-02-23   

绝对重力仪的技术发展: 光学干涉和原子干涉 下载: 1906次特邀综述

Technical Development of Absolute Gravimeter: Laser Interferometry and Atom Interferometry
吴书清 1,2,**李天初 1,2,*
作者单位
1 中国计量科学研究院时间频率计量科学研究所, 北京 100029
2 国家市场监管总局时间频率计量基准重点实验室, 北京 100029
引用该论文

吴书清, 李天初. 绝对重力仪的技术发展: 光学干涉和原子干涉[J]. 光学学报, 2021, 41(1): 0102002.

Shuqing Wu, Tianchu Li. Technical Development of Absolute Gravimeter: Laser Interferometry and Atom Interferometry[J]. Acta Optica Sinica, 2021, 41(1): 0102002.

参考文献

[1] Peck E R. Theory of the corner-cube interferometer[J]. Journal of the Optical Society of America, 1948, 38(12): 1015-1024.

[2] Klopping F. FG5X absolute gravimeter user's manual[EB/OL]. ( 2015-10-26)[2020-07-24]. http:∥microglacoste.com/wp-content/uploads/2018/01/FG5X-Manual-115060001.pdf.

[3] Zumberge M A, Rinker R L, Faller J E, et al. A portable apparatus for absolute measurements of the earth's gravity[J]. Metrologia, 1982, 18(3): 145-152.

[4] Rinker RL. Super spring- a new type of low frequency vibration isolator[D]. Boulder: University of Colorado at Boulder, 1983.

[5] Niebauer T M, Sasagawa G S, Faller J E, et al. A new generation of absolute gravimeters[J]. Metrologia, 1995, 32(3): 159-180.

[6] Klopping F. FG5X absolute gravity meters[EB/OL]. ( 2014-12-01)[2020-07-24]. http:∥microglacoste.com/product/fg5-X-absolute-gravimeter/.

[7] Berrino G. Combined gravimetry in the observation of volcanic processes in Southern Italy[J]. Journal of Geodynamics, 2000, 30(3): 371-388.

[8] D'Agostino G. Desogus S , Germak A , et al. The new IMGC-02 transportable absolute gravimeter: measurement apparatus and applications in geophysics and volcanology[J]. Annals of Geophysics, 2008, 51: 39-49.

[9] Faller J E, Vitouchkine A L. A new small cam-driven absolute gravimeter[J]. International Association of Geodesy Symposia, 2005, 129: 276-279.

[10] Feng Y Y, Zhang G Y, Li D X, et al. A transportable absolute gravimeter for determining the acceleration due to the earth's gravity[J]. Metrologia, 1982, 18(3): 139-143.

[11] Boulanger Y, Faller J, Groten E, et al. Results of the second international comparison of absolute gravimeters in Sevres 1985[J]. Bulletin D' Information-Bureau Gravimétrique International, 1986, 59: 89-103.

[12] Sakuma A. An industrialized absolute gravimeter: type GA-60-A description of the instrument and its trial use in the French Gravity Net[J]. Bulletin D' Information du BGI, 1983, 53: 114-118.

[13] Tsubokawa T, Svitlov S. New method of digital fringe signal processing in an absolute gravimeter[J]. IEEE Transactions on Instrumentation and Measurement, 1999, 48(2): 488-491.

[14] Vitushkin L F, Orlov O A. Absolute ballistic gravimeter ABG-VNIIM-1 by D.I. Mendeleyev research institute for metrology[J]. Gyroscopy and Navigation, 2014, 5(4): 283-287.

[15] RothleitnerC. Ultra-high precision, absolute, earth gravity measurements [D]. Erlangen: University ofErlangen-Nuremberg, 2008.

[16] Kennard EH. Kinetic theory of gases, with an introduction to statistical mechanics[M]. New York:McGraw-Hill, 1938.

[17] D'AgostinoG, Desogus S, Germak A, et al. The assessment of the measurement error due to a non-vertical laser beam path in absolute gravimeters[C]∥Cahier du Centre Europeen dé Geodynamique et de Séismologie, 2006: 26.

[18] van Westrum D, Niebauer T M. The diffraction correction for absolute gravimeters[J]. Metrologia, 2003, 40(5): 258-263.

[19] Kuroda K, Mio N. Correction to interferometric measurements of absolute gravity arising from the finite speed of light[J]. Metrologia, 1991, 28(2): 75-78.

[20] Nagornyi V D, Zanimonskiy Y M, Zanimonskiy Y Y. Correction due to the finite speed of light in absolute gravimeters[J]. Metrologia, 2011, 48(3): 101-113.

[21] Niebauer T M, Billson R, Schiel A, et al. The self-attraction correction for the FG5X absolute gravity meter[J]. Metrologia, 2013, 50(1): 1-8.

[22] Svetlov S M. An absolute gravimeter and vibration disturbances: a frequency responses method[J]. Springer Berlin Heidelberg, 1997: 47-54.

[23] Wahr J M. Deformation induced by polar motion[J]. Journal of Geophysical Research Atmospheres, 1985, 90(B11): 9363-9368.

[24] Chandler S C. On the variation of latitude, I[J]. The AstronomicalJournal, 1891, 11: 59- 61.

[25] McCarthy DD, Petit G. IERSconventions ( 2003)[ R]. Frankfurt am Main: IERS, 2004.

[26] Kasevich M, Chu S. Atomic interferometry using stimulated Raman transitions[J]. Physical Review Letters, 1991, 67(2): 181-184.

[27] Giltner D M. McGowan R W, Lee S A. Atom interferometer based on Bragg scattering from standing light waves[J]. Physical Review Letters, 1995, 75(14): 2638-2641.

[28] Dalibard J, Cohen-Tannoudji C. Laser cooling below the Doppler limit by polarization gradients: simple theoretical models[J]. Journal of the Optical Society of America B, 1989, 6(11): 2023-2045.

[29] Wang S K, Zhao Y, Zhuang W, et al. Shift evaluation of the atomic gravimeter NIM-AGRb-1 and its comparison with FG5X[J]. Metrologia, 2018, 55(3): 360-365.

[30] Geiger R, Landragin A, Merlet S, et al. High-accuracy inertial measurements with cold-atom sensors[J]. AVS Quantum Science, 2020, 2(2): 024702.

[31] Fu Z J, Wu B, Cheng B, et al. A new type of compact gravimeter for long-term absolute gravity monitoring[J]. Metrologia, 2019, 56(2): 025001.

[32] Bidel Y, Carraz O, Charrière R, et al. Compact cold atom gravimeter for field applications[J]. Applied Physics Letters, 2013, 102(14): 144107.

[33] Hu Z K, Sun B L, Duan X C, et al. Demonstration of an ultrahigh-sensitivity atom-interferometry absolute gravimeter[J]. Physical Review A, 2013, 88(4): 043610.

[34] Freier C, Hauth M, Schkolnik V, et al. Mobile quantum gravity sensor with unprecedented stability[J]. Journal of Physics: Conference Series, 2016, 723: 012050.

[35] Bodart Q, Merlet S, Malossi N, et al. A cold atom pyramidal gravimeter with a single laser beam[J]. Applied Physics Letters, 2010, 96(13): 134101.

[36] Ménoret V, Vermeulen P, Le Moigne N, et al. Gravity measurements below 10 -9 g with a transportable absolute quantum gravimeter[J]. Scientific Reports, 2018, 8: 12300.

[37] Wu XJ, PagelZ, Malek BS, et al., 2019, 5(9): eaax0800.

[38] Schmidt M, Prevedelli M, Giorgini A, et al. A portable laser system for high-precision atom interferometry experiments[J]. Applied Physics B, 2011, 102(1): 11-18.

[39] Theron F, Carraz O, Renon G, et al. Narrow linewidth single laser source system for onboard atom interferometry[J]. Applied Physics B, 2015, 118(1): 1-5.

[40] Wang Q Y, Wang Z Y, Fu Z J, et al. A compact laser system for the cold atom gravimeter[J]. Optics Communications, 2016, 358: 82-87.

[41] Zhang X W, Zhong J Q, Tang B, et al. Compact portable laser system for mobile cold atom gravimeters[J]. Applied Optics, 2018, 57(22): 6545-6551.

[42] Zi F, Zhang X, Huang M, et al. A compact atom interferometer for field gravity measurements[J]. Laser Physics, 2019, 29(3): 035504.

[43] Caldani R, Merlet S. Pereira dos Santos F, et al. A prototype industrial laser system for cold atom inertial sensing in space[J]. The European Physical Journal D, 2019, 73(12): 248-256.

[44] Li G, Hu H, Wu K, et al. Ultra-low frequency vertical vibration isolator based on LaCoste spring linkage[J]. Review of Scientific Instruments, 2014, 85(10): 104502.

[45] Hensley J M, Peters A, Chu S. Active low frequency vertical vibration isolation[J]. Review of Scientific Instruments, 1999, 70(6): 2735-2741.

[46] Hauth M, Freier C, Schkolnik V, et al. First gravity measurements using the mobile atom interferometer GAIN[J]. Applied Physics B, 2013, 113: 49-55.

[47] Tang B, Zhou L, Xiong Z Y, et al. A programmable broadband low frequency active vibration isolation system for atom interferometry[J]. Review of Scientific Instruments, 2014, 85(9): 093109.

[48] Zhou M K, Xiong X, Chen L L, et al. Note: a three-dimension active vibration isolator for precision atom gravimeters[J]. Review of Scientific Instruments, 2015, 86(4): 046108.

[49] le Gouet J, Mehlstäubler T E, Kim J, et al. Limits to the sensitivity of a low noise compact atomic gravimeter[J]. Applied Physics B, 2008, 92(2): 133-144.

[50] Fu Z J, Wang Q Y, Wang Z Y, et al. Participation in the absolute gravity comparison with a compact cold atom gravimeter[J]. Chinese Optics Letters, 2019, 17(1): 011204.

[51] Gillot P, Francis O, Landragin A, et al. Stability comparison of two absolute gravimeters: optical versus atomic interferometers[J]. Physics, 2014, 51(5): L9-L11.

[52] Karcher R, Imanaliev A, Merlet S, et al. Improving the accuracy of atom interferometers with ultracold sources[J]. New Journal of Physics, 2018, 20(11): 113041.

[53] Zhou M K, Luo Q, Chen L L, et al. Observing the effect of wave-front aberrations in an atom interferometer by modulating the diameter of Raman beams[J]. Physical Review A, 2016, 93: 043610.

[54] Wu S Q, Feng J Y, Li C J, et al. The results of CCM.G-K2. 2017 key comparison[J]. Metrologia, 2020, 57(1A): 07002.

[55] Bidel Y, Zahzam N, Blanchard C, et al. Absolute marine gravimetry with matter-wave interferometry[J]. Nature Communications, 2018, 9: 627.

[56] Bidel Y, Zahzam N, Bresson A, et al. Absolute airborne gravimetry with a cold atom sensor[J]. Journal of Geodesy, 2020, 94(2): 20.

吴书清, 李天初. 绝对重力仪的技术发展: 光学干涉和原子干涉[J]. 光学学报, 2021, 41(1): 0102002. Shuqing Wu, Tianchu Li. Technical Development of Absolute Gravimeter: Laser Interferometry and Atom Interferometry[J]. Acta Optica Sinica, 2021, 41(1): 0102002.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!